Journal Home > Volume 16 , Issue 7

Utilizing solar energy for sorbent regeneration during the CO2 swing adsorption process could potentially reduce CO2 capture costs. This study describes a new technique—solar thermal swing adsorption (STSA) for CO2 capture based on application of intermittent illumination onto porous carbon monolith (PCM) sorbents during the CO2 capture process. This allows CO2 to be selectively adsorbed on the sorbents during the light-off periods and thereafter released during the light-on periods due to the solar thermal effect. The freestanding and mechanically strong PCMs have rich ultramicropores with narrow pore size distributions, displaying relatively high CO2 adsorption capacity and high CO2/N2 selectivity. Given the high CO2 capture performance, high solar thermal conversion efficiency, and high thermal conductivity, the PCM sorbents could achieve high CO2 capture rate of up to 0.226 kg CO2·kgcarbon−1·h−1 from a gas mixture of 20 vol.% CO2/80 vol.% N2 under STSA conditions with a light intensity of 1000 W·m−2. In addition, the combination of STSA with the conventional vacuum swing adsorption technique further increases the CO2 working capacity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solar thermal swing adsorption on porous carbon monoliths for high-performance CO2 capture

Show Author's information Zheng Wu1,§Xing-Hao Du1,§Qian-Feng Zhang1Maria Strømme2Chao Xu1,2( )
Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, China
Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden

§ Zheng Wu and Xing-Hao Du contributed equally to this work.

Abstract

Utilizing solar energy for sorbent regeneration during the CO2 swing adsorption process could potentially reduce CO2 capture costs. This study describes a new technique—solar thermal swing adsorption (STSA) for CO2 capture based on application of intermittent illumination onto porous carbon monolith (PCM) sorbents during the CO2 capture process. This allows CO2 to be selectively adsorbed on the sorbents during the light-off periods and thereafter released during the light-on periods due to the solar thermal effect. The freestanding and mechanically strong PCMs have rich ultramicropores with narrow pore size distributions, displaying relatively high CO2 adsorption capacity and high CO2/N2 selectivity. Given the high CO2 capture performance, high solar thermal conversion efficiency, and high thermal conductivity, the PCM sorbents could achieve high CO2 capture rate of up to 0.226 kg CO2·kgcarbon−1·h−1 from a gas mixture of 20 vol.% CO2/80 vol.% N2 under STSA conditions with a light intensity of 1000 W·m−2. In addition, the combination of STSA with the conventional vacuum swing adsorption technique further increases the CO2 working capacity.

Keywords: adsorption, CO2 capture, microporous materials, porous carbon monoliths, solar thermal swing adsorption

References(45)

[1]

Chu, S. Carbon capture and sequestration. Science 2009, 325, 1599–1599.

[2]

Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.; Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255.

[3]

Liu, R. S.; Shi, X. D.; Wang, C. T.; Gao, Y. Z.; Xu, S.; Hao, G. P.; Chen, S. Y.; Lu, A. H. Advances in post-combustion CO2 capture by physical adsorption: From materials innovation to separation practice. ChemSusChem 2021, 14, 1428–1471.

[4]

Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Y. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 2013, 104, 418–433.

[5]

Bahamon, D.; Díaz-Márquez, A.; Gamallo, P.; Vega, L. F. Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities. Chem. Eng. J. 2018, 342, 458–473.

[6]

Li, H. Q.; Hill, M. R. Low-energy CO2 release from metal-organic frameworks triggered by external stimuli. Acc. Chem. Res. 2017, 50, 778–786.

[7]

Qadir, A.; Mokhtar, M.; Khalilpour, R.; Milani, D.; Vassallo, A.; Chiesa, M.; Abbas, A. Potential for solar-assisted post-combustion carbon capture in Australia. Appl. Energy 2013, 111, 175–185.

[8]

Luo, F.; Fan, C. B.; Luo, M. B.; Wu, X. L.; Zhu, Y.; Pu, S. Z.; Xu, W. Y.; Guo, G. C. Photoswitching CO2 capture and release in a photochromic diarylethene metal-organic framework. Angew. Chem., Int. Ed. 2014, 53, 9298–9301.

[9]

D’Alessandro, D. M.; Smit, B.; Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058–6082.

[10]

Li, G. P.; Li, Z. Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Efficient C2 hydrocarbons and CO2 adsorption and separation in a multi-site functionalized MOF. Chin. J. Struct. Chem. 2021, 40, 1047–1054.

[11]

Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

[12]

Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem., Int. Ed. 2013, 52, 2925–2929.

[13]

Bi, H. C.; Yin, Z. Y.; Cao, X. H.; Xie, X.; Tan, C. L.; Huang, X.; Chen, B.; Chen, F. T.; Yang, Q. L.; Bu, X. Y. et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921.

[14]

Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

[15]

Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.

[16]

Kong, X. Y.; Zhou, S. Y.; Strømme, M.; Xu, C. All-cellulose-based freestanding porous carbon nanocomposites and their versatile applications. Compos. B: Eng. 2022, 232, 109602.

[17]

Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857.

[18]

Singh, G.; Lakhi, K. S.; Sil, S.; Bhosale, S. V.; Kim, I.; Albahily, K.; Vinu, A. Biomass derived porous carbon for CO2 capture. Carbon 2019, 148, 164–186.

[19]

Bolisetty, S.; Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nat. Nanotech. 2016, 11, 365–371.

[20]

Hu, X. W.; Wang, H. G.; Faul, C. F. J.; Wen, J.; Wei, Y.; Zhu, M. F.; Liao, Y. Z. A crosslinking alkylation strategy to construct nitrogen-enriched tetraphenylmethane-based porous organic polymers as efficient carbon dioxide and iodine adsorbents. Chem. Eng. J. 2020, 382, 122998.

[21]

Wang, H. G.; Cheng, Z. H.; Liao, Y. Z.; Li, J. H.; Weber, J.; Thomas, A.; Faul, C. F. J. Conjugated microporous polycarbazole networks as precursors for nitrogen-enriched microporous carbons for CO2 storage and electrochemical capacitors. Chem. Mater. 2017, 29, 4885–4893.

[22]

Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213–1222.

[23]

Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G. S.; Shi, X. Z.; Dai, H. J.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646–5652.

[24]

Chu, X. H.; Zhang, P.; Wang, Y. L.; Sun, B. H.; Liu, Y. H.; Zhang, Q. C.; Feng, W. L.; Li, Z. H.; Li, K. H.; Zhou, N. L. et al. Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source. Carbon 2021, 176, 126–138.

[25]

Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.

[26]

Liu, Z. W.; Niu, L. J.; Zong, X. P.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Ambient photothermal catalytic CO oxidation over a carbon-supported palladium catalyst. Appl. Catal. B: Environ. 2022, 313, 121439.

[27]

Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Luo, W.; Song, J. W.; Hitz, E.; Jia, C.; Zhou, Y. B.; Liu, B. Y. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 2017, 29, 1700981.

[28]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[29]

Song, Y.; Xu, N.; Liu, G. L.; Qi, H. S.; Zhao, W.; Zhu, B.; Zhou, L.; Zhu, J. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 2022, 17, 857–863.

[30]

Li, C. X.; Cao, S. J.; Lutzki, J.; Yang, J.; Konegger, T.; Kleitz, F.; Thomas, A. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J. Am. Chem. Soc. 2022, 144, 3083–3090.

[31]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[32]

Yao, P. C.; Gong, H.; Wu, Z. Y.; Fu, H. Y.; Li, B.; Zhu, B.; Ji, J. W.; Wang, X. Y.; Xu, N.; Tang, C. J. et al. Greener and higher conversion of esterification via interfacial photothermal catalysis. Nat. Sustain. 2022, 5, 348–356.

[33]

Verpaalen, R. C. P. ; Engels, T. ; Schenning, A. P. H. J. ; Debije, M. G. Stimuli-responsive shape changing commodity polymer composites and bilayers. ACS Appl. Mater. Interfaces 2020, 12, 38829–38844.

[34]

Mitra, S.; Kandambeth, S.; Biswal, B. P.; Khayum M, A.; Choudhury, C. K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828.

[35]

Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schüth, F.; Bongard, H. J.; Lu, A. H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 2011, 133, 11378–11388.

[36]

Wang, X. Q.; Bozhilov, K. N.; Feng, P. Y. Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem. Mater. 2006, 18, 6373–6381.

[37]

Szczurek, A.; Fierro, V.; Pizzi, A.; Celzard, A. Emulsion-templated porous carbon monoliths derived from tannins. Carbon 2014, 74, 352–362.

[38]

Stein, A.; Wang, Z. Y.; Fierke, M. A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 2009, 21, 265–293.

[39]

Gong, J.; Antonietti, M.; Yuan, J. Y. Poly(ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing. Angew. Chem., Int. Ed. 2017, 56, 7557–7563.

[40]

Sethia, G.; Sayari, A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon 2015, 93, 68–80.

[41]

Li, H. M.; Li, J. H.; Thomas, A.; Liao, Y. Z. Ultra-high surface area nitrogen-doped carbon aerogels derived from a schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors. Adv. Funct. Mater. 2019, 29, 1904785.

[42]

Jagiello, J.; Thommes, M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 2004, 42, 1227–1232.

[43]

Blankenship, L. S.; Jagiello, J.; Mokaya, R. Confirmation of pore formation mechanisms in biochars and activated carbons by dual isotherm analysis. Mater. Adv. 2022, 3, 3961–3971.

[44]

Hug, S.; Stegbauer, L.; Oh, H.; Hirscher, M.; Lotsch, B. V. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage. Chem. Mater. 2015, 27, 8001–8010.

[45]

Min, X. Z.; Zhu, B.; Li, B.; Li, J. L.; Zhu, J. Interfacial solar vapor generation: Materials and structural design. Acc. Mater. Res. 2021, 2, 198–209.

File
12274_2023_5561_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2022
Revised: 03 February 2023
Accepted: 08 February 2023
Published: 28 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by ÅForsk research grant and Anhui Provincial Natural Science Foundation (No. 2108085QB72). The authors thank Dr. Shengyang Zhou for the measurement and discussion of mechanical property, Ms. Xueying Kong for the help of UV–vis–NIR spectrum measurement, and Dr. Ocean Cheung for the discussion of gas adsorption studies.

Return