Journal Home > Volume 16 , Issue 7

Rare-earth (RE) halide solid electrolytes (HSEs) have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries (ASSBs). However, only very limited types of HSEs have been reported with high performance. In this work, tens of grams of RE-HSE Li3TbBr6 (LTbB) was synthesized by a vacuum evaporation-assisted method. The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm−1, a wide electrochemical window, and good formability. Accordingly, the assembled solid lithium-tellurium (Li-Te) battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles, which is superior to most previous reports. The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations. Theoretical calculations have demonstrated the dominant conductivity contributions of the direct [octahedral]–[octahedral] ([Oct]–[Oct]) pathway for Li ion migrations in the electrolyte. The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration, leading to a low activation barrier. Therefore, this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs, indicating the great potential of RE-based HSEs in energy devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor

Show Author's information Zhichao Zeng1,§Xiaomeng Shi1,§Mingzi Sun2Hongtu Zhang1Wei Luo3Yunhui Huang3Bolong Huang2( )Yaping Du1( )Chun-Hua Yan1,4,5
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials, Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

§ Zhichao Zeng and Xiaomeng Shi contributed equally to this work.

Abstract

Rare-earth (RE) halide solid electrolytes (HSEs) have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries (ASSBs). However, only very limited types of HSEs have been reported with high performance. In this work, tens of grams of RE-HSE Li3TbBr6 (LTbB) was synthesized by a vacuum evaporation-assisted method. The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm−1, a wide electrochemical window, and good formability. Accordingly, the assembled solid lithium-tellurium (Li-Te) battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles, which is superior to most previous reports. The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations. Theoretical calculations have demonstrated the dominant conductivity contributions of the direct [octahedral]–[octahedral] ([Oct]–[Oct]) pathway for Li ion migrations in the electrolyte. The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration, leading to a low activation barrier. Therefore, this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs, indicating the great potential of RE-based HSEs in energy devices.

Keywords: superionic conductor, solid electrolytes, all-solid-state lithium batteries, Li-Te solid battery, rare-earth halide

References(55)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[3]

Schnell, J.; Tietz, F.; Singer, C.; Hofer, A.; Billot, N.; Reinhart, G. Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 2019, 12, 1818–1833.

[4]

Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.

[5]

Su, Y. B.; Ye, L. H.; Fitzhugh, W.; Wang, Y. C.; Gil-González, E.; Kim, I.; Li, X. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 2020, 13, 908–916.

[6]

Wu, B. B.; Wang, S. Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W. Q.; Yang, J. H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810.

[7]

Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

[8]

Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

[9]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[10]

Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

[11]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[12]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[13]

Garbayo, I.; Struzik, M.; Bowman, W. J.; Pfenninger, R.; Stilp, E.; Rupp, J. L. M. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 2018, 8, 1702265.

[14]

Xie, M. L.; Lin, X.; Huang, Z. M.; Li, Y. Y.; Zhong, Y.; Cheng, Z. X.; Yuan, L. X.; Shen, Y.; Lu, X.; Zhai, T. Y. et al. A Li-Al-O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode. Adv. Funct. Mater. 2020, 30, 1905949.

[15]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[16]

Li, X. N.; Liang, J. W.; Li, X.; Wang, C. H.; Luo, J.; Li, R. Y.; Sun, X. L. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci. 2018, 11, 2828–2832.

[17]

Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.

[18]

Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.

[19]

Wang, X. S.; Liu, J.; Yin, R.; Xu, Y. C.; Cui, Y. H.; Zhao, L.; Yu, X. B. High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2−xSmxO12 (x = 0–0.1) ceramics. Mater. Lett. 2018, 231, 43–46.

[20]

Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

[21]

Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402.

[22]

Song, Y. X.; Shi, Y.; Wan, J.; Lang, S. Y.; Hu, X. C.; Yan, H. J.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study. Energy Environ. Sci. 2019, 12, 2496–2506.

[23]

Swamy, T.; Chen, X. W.; Chiang, Y. M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem. Mater. 2019, 31, 707–713.

[24]

Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W. et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 2019, 4, 2480–2488.

[25]

Li, X. N.; Liang, J. W.; Yang, X. F.; Adair, K. R.; Wang, C. H.; Zhao, F. P.; Sun, X. L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 2020, 13, 1429–1461.

[26]

Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y. S.; Gong, S.; Sun, Q.; Mo, Y. F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem., Int. Ed. 2019, 58, 8039–8043.

[27]

Li, X. N.; Liang, J. W.; Luo, J.; Banis, M. N.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671.

[28]

Muy, S.; Voss, J.; Schlem, R.; Koerver, R.; Sedlmaier, S. J.; Maglia, F.; Lamp, P.; Zeier, W. G.; Shao-Horn, Y. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 2019, 16, 270–282.

[29]

Xu, Z. M.; Chen, X.; Liu, K.; Chen, R. H.; Zeng, X. Q.; Zhu, H. Influence of anion charge on Li ion diffusion in a new solid-state electrolyte, Li3LaI6. Chem. Mater. 2019, 31, 7425–7433.

[30]

Bohnsack, A.; Balzer, G.; Güdel, H. U.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VII [1]. Die bromide Li3MBr6 (M = Sm–Lu, Y): Synthese, kristallstruktur, ionenbeweglichkeit. Z. Anorg. Allg. Chem. 1997, 623, 1352–1356.

[31]

Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VI [1]. Ternäre chloride der selten-erd-elemente mit lithium, Li3MCl6 (M = Tb–Lu, Y, Sc): Synthese, kristallstrukturen und ionenbewegung. Z. Anorg. Allg. Chem. 1997, 623, 1067–1073.

[32]

Sun, C. T.; Li, K. Y.; Xue, D. F. Searching for novel materials via 4f chemistry. J. Rare Earths 2019, 37, 1–10.

[33]

Zhang, Q.; Gao, Z. Q.; Shi, X. M.; Zhang, C.; Liu, K.; Zhang, J.; Zhou, L.; Ma, C. J.; Du, Y. P. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10.

[34]

Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075.

[35]

Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.

[36]

Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 2020, 5, 533–539.

[37]

Liu, Z. T.; Ma, S.; Liu, J.; Xiong, S.; Ma, Y. F.; Chen, H. L. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 2021, 6, 298–304.

[38]

Kim, S. Y.; Kaup, K.; Park, K. H.; Assoud, A.; Zhou, L. D.; Liu, J.; Wu, X. H.; Nazar, L. F. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Materials Lett. 2021, 3, 930–938.

[39]

Yu, T. W.; Liang, J. W.; Luo, L.; Wang, L. M.; Zhao, F. P.; Xu, G. F.; Bai, X. T.; Yang, R.; Zhao, S. Q.; Wang, J. T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 2021, 11, 2101915.

[40]

Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 2020, 10, 1903719.

[41]

Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327–337.

[42]

Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier, W. G. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3−xIn1−xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 2021, 33, 4773–4782.

[43]

Wan, T. H.; Ciucci, F. Ab initio study of the defect chemistry and substitutional strategies for highly conductive Li3YX6 (X = F, Cl, Br, and I) electrolyte for the application of solid-state batteries. ACS Appl. Energy Mater. 2021, 4, 7930–7941.

[44]

Jiang, M.; Mukherjee, S.; Chen, Z. W.; Chen, L. X.; Li, M. L.; Xiao, H. Y.; Gao, C.; Singh, C. V. Materials perspective on new lithium chlorides and bromides: Insights into thermo-physical properties. Phys. Chem. Chem. Phys. 2020, 22, 22758–22767.

[45]

He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: A high-performance freestanding cathode for Li-Te batteries. ACS Nano 2016, 10, 8837–8842.

[46]

Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

[47]

Shi, X. M.; Zeng, Z. C.; Zhang, H. T.; Huang, B. L.; Sun, M. Z.; Wong, H. H.; Lu, Q. Y.; Luo, W.; Huang, Y. H.; Du, Y. P. et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li-Se battery. Small Methods 2021, 5, 2101002.

[48]

Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W. B.; Weigand, H.; Walter, D. et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 2016, 28, 6152–6165.

[49]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

[50]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[51]

Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

[52]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[53]

Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys.: Condens. Matter 1997, 9, 767–808.

[54]

Head, J. D.; Zerner, M. C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

[55]

Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.

File
12274_2023_5559_MOESM1_ESM.pdf (1.9 MB)
12274_2023_5559_MOESM2_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2022
Revised: 07 February 2023
Accepted: 09 February 2023
Published: 13 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1501101), the Natural Science Foundation of China (No. 21971117), Functional Research Funds for the Central Universities, Nankai University (No. 63186005), Tianjin Key Lab for Rare Earth Materials and Applications (No. ZB19500202), the National Natural Science Foundation of China/Research Grant Council Joint Research Scheme (No. N_PolyU502/21), 111 Project (No. B18030) from China, Outstanding Youth Project of Tianjin Natural Science Foundation (No. 20JCJQJC00130), Key Project of Tianjin Natural Science Foundation (No. 20JCZDJC00650), the Projects of Strategic Importance of The Hong Kong Polytechnic University (No. 1-ZE2V), Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), National Postdoctoral Program for Innovative Talents (No. BX20220157), Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures (No. 2022GXYSOF07), and Haihe Laboratory of Sustainable Chemical Transformations. B. L. H. also thanks the support from Research Centre for Carbon-Strategic Catalysis (RCCSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University.

Return