Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rare-earth (RE) halide solid electrolytes (HSEs) have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries (ASSBs). However, only very limited types of HSEs have been reported with high performance. In this work, tens of grams of RE-HSE Li3TbBr6 (LTbB) was synthesized by a vacuum evaporation-assisted method. The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm−1, a wide electrochemical window, and good formability. Accordingly, the assembled solid lithium-tellurium (Li-Te) battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles, which is superior to most previous reports. The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations. Theoretical calculations have demonstrated the dominant conductivity contributions of the direct [octahedral]–[octahedral] ([Oct]–[Oct]) pathway for Li ion migrations in the electrolyte. The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration, leading to a low activation barrier. Therefore, this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs, indicating the great potential of RE-based HSEs in energy devices.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.
Schnell, J.; Tietz, F.; Singer, C.; Hofer, A.; Billot, N.; Reinhart, G. Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 2019, 12, 1818–1833.
Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.
Su, Y. B.; Ye, L. H.; Fitzhugh, W.; Wang, Y. C.; Gil-González, E.; Kim, I.; Li, X. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 2020, 13, 908–916.
Wu, B. B.; Wang, S. Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W. Q.; Yang, J. H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810.
Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.
Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.
Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.
Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.
Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.
Garbayo, I.; Struzik, M.; Bowman, W. J.; Pfenninger, R.; Stilp, E.; Rupp, J. L. M. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 2018, 8, 1702265.
Xie, M. L.; Lin, X.; Huang, Z. M.; Li, Y. Y.; Zhong, Y.; Cheng, Z. X.; Yuan, L. X.; Shen, Y.; Lu, X.; Zhai, T. Y. et al. A Li-Al-O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode. Adv. Funct. Mater. 2020, 30, 1905949.
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.
Li, X. N.; Liang, J. W.; Li, X.; Wang, C. H.; Luo, J.; Li, R. Y.; Sun, X. L. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci. 2018, 11, 2828–2832.
Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.
Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.
Wang, X. S.; Liu, J.; Yin, R.; Xu, Y. C.; Cui, Y. H.; Zhao, L.; Yu, X. B. High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2−xSmxO12 (x = 0–0.1) ceramics. Mater. Lett. 2018, 231, 43–46.
Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.
Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402.
Song, Y. X.; Shi, Y.; Wan, J.; Lang, S. Y.; Hu, X. C.; Yan, H. J.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study. Energy Environ. Sci. 2019, 12, 2496–2506.
Swamy, T.; Chen, X. W.; Chiang, Y. M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem. Mater. 2019, 31, 707–713.
Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W. et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 2019, 4, 2480–2488.
Li, X. N.; Liang, J. W.; Yang, X. F.; Adair, K. R.; Wang, C. H.; Zhao, F. P.; Sun, X. L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 2020, 13, 1429–1461.
Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y. S.; Gong, S.; Sun, Q.; Mo, Y. F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem., Int. Ed. 2019, 58, 8039–8043.
Li, X. N.; Liang, J. W.; Luo, J.; Banis, M. N.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671.
Muy, S.; Voss, J.; Schlem, R.; Koerver, R.; Sedlmaier, S. J.; Maglia, F.; Lamp, P.; Zeier, W. G.; Shao-Horn, Y. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 2019, 16, 270–282.
Xu, Z. M.; Chen, X.; Liu, K.; Chen, R. H.; Zeng, X. Q.; Zhu, H. Influence of anion charge on Li ion diffusion in a new solid-state electrolyte, Li3LaI6. Chem. Mater. 2019, 31, 7425–7433.
Bohnsack, A.; Balzer, G.; Güdel, H. U.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VII [1]. Die bromide Li3MBr6 (M = Sm–Lu, Y): Synthese, kristallstruktur, ionenbeweglichkeit. Z. Anorg. Allg. Chem. 1997, 623, 1352–1356.
Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VI [1]. Ternäre chloride der selten-erd-elemente mit lithium, Li3MCl6 (M = Tb–Lu, Y, Sc): Synthese, kristallstrukturen und ionenbewegung. Z. Anorg. Allg. Chem. 1997, 623, 1067–1073.
Sun, C. T.; Li, K. Y.; Xue, D. F. Searching for novel materials via 4f chemistry. J. Rare Earths 2019, 37, 1–10.
Zhang, Q.; Gao, Z. Q.; Shi, X. M.; Zhang, C.; Liu, K.; Zhang, J.; Zhou, L.; Ma, C. J.; Du, Y. P. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10.
Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075.
Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.
Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 2020, 5, 533–539.
Liu, Z. T.; Ma, S.; Liu, J.; Xiong, S.; Ma, Y. F.; Chen, H. L. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 2021, 6, 298–304.
Kim, S. Y.; Kaup, K.; Park, K. H.; Assoud, A.; Zhou, L. D.; Liu, J.; Wu, X. H.; Nazar, L. F. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Materials Lett. 2021, 3, 930–938.
Yu, T. W.; Liang, J. W.; Luo, L.; Wang, L. M.; Zhao, F. P.; Xu, G. F.; Bai, X. T.; Yang, R.; Zhao, S. Q.; Wang, J. T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 2021, 11, 2101915.
Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 2020, 10, 1903719.
Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327–337.
Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier, W. G. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3−xIn1−xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 2021, 33, 4773–4782.
Wan, T. H.; Ciucci, F. Ab initio study of the defect chemistry and substitutional strategies for highly conductive Li3YX6 (X = F, Cl, Br, and I) electrolyte for the application of solid-state batteries. ACS Appl. Energy Mater. 2021, 4, 7930–7941.
Jiang, M.; Mukherjee, S.; Chen, Z. W.; Chen, L. X.; Li, M. L.; Xiao, H. Y.; Gao, C.; Singh, C. V. Materials perspective on new lithium chlorides and bromides: Insights into thermo-physical properties. Phys. Chem. Chem. Phys. 2020, 22, 22758–22767.
He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: A high-performance freestanding cathode for Li-Te batteries. ACS Nano 2016, 10, 8837–8842.
Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.
Shi, X. M.; Zeng, Z. C.; Zhang, H. T.; Huang, B. L.; Sun, M. Z.; Wong, H. H.; Lu, Q. Y.; Luo, W.; Huang, Y. H.; Du, Y. P. et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li-Se battery. Small Methods 2021, 5, 2101002.
Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W. B.; Weigand, H.; Walter, D. et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 2016, 28, 6152–6165.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys.: Condens. Matter 1997, 9, 767–808.
Head, J. D.; Zerner, M. C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.
Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.