Journal Home > Volume 17 , Issue 1

Na3V2(PO4)3 (NVP), as a great potential cathode candidate for Na-ion batteries (NIBs), has attracted enormous interest due to its three-dimensional (3D) large open framework for convenient Na+ transport, yet its practical application is still limited by its inferior electron conductivity and sluggish Na+ diffusion kinetics. Herein, the tiny Cr doped hierarchical NVP micro-flower cathodes (i.e., Na3V2−xCrx(PO4)3@C, x ≤ 0.1), which are self-assembled with single-crystal nanoflake subunits in-situ coated with carbon nano-shell, are designed and fabricated via a scalable avenue. The optimized cathode, i.e., Na3V1.94Cr0.06(PO4)3@C (NVCP-6), was endowed with more electro-active Na(2) sites and higher electronic/ionic conductivity for efficient sodium storage. Benefiting from these competitive merits, the NVCP-6, when evaluated as a cathode towards NIBs, exhibits an ultrahigh-rate capability of 99.8 mAh·g−1 at 200 C and superior stability of 82.2% over 7300 cycles at 50 C. Furthermore, the NVCP-6 based full NIBs display remarkable electrochemical properties in terms of both high-rate capacities and long-duration cycling properties at different temperatures (−20–50 °C). The contribution, i.e., the design of “four ounces can move a thousand pounds”, here will promote the practical industrial application of NVP towards advanced NIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of “four ounces moving a thousand pounds”

Show Author's information Yongjia WangGuoshuai SuXiaoying LiLinrui HouLongwei Liang( )Changzhou Yuan( )
School of Materials Science & Engineering, University of Jinan, Jinan 250022, China

Abstract

Na3V2(PO4)3 (NVP), as a great potential cathode candidate for Na-ion batteries (NIBs), has attracted enormous interest due to its three-dimensional (3D) large open framework for convenient Na+ transport, yet its practical application is still limited by its inferior electron conductivity and sluggish Na+ diffusion kinetics. Herein, the tiny Cr doped hierarchical NVP micro-flower cathodes (i.e., Na3V2−xCrx(PO4)3@C, x ≤ 0.1), which are self-assembled with single-crystal nanoflake subunits in-situ coated with carbon nano-shell, are designed and fabricated via a scalable avenue. The optimized cathode, i.e., Na3V1.94Cr0.06(PO4)3@C (NVCP-6), was endowed with more electro-active Na(2) sites and higher electronic/ionic conductivity for efficient sodium storage. Benefiting from these competitive merits, the NVCP-6, when evaluated as a cathode towards NIBs, exhibits an ultrahigh-rate capability of 99.8 mAh·g−1 at 200 C and superior stability of 82.2% over 7300 cycles at 50 C. Furthermore, the NVCP-6 based full NIBs display remarkable electrochemical properties in terms of both high-rate capacities and long-duration cycling properties at different temperatures (−20–50 °C). The contribution, i.e., the design of “four ounces can move a thousand pounds”, here will promote the practical industrial application of NVP towards advanced NIBs.

Keywords: Na-ion batteries, tiny Cr doping, active Na sites, ultrahigh-rate capability, Na3V2(PO4)3 cathode

References(56)

[1]

Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

[2]

Pan, D.; Chen, W. X.; Sun, S. W.; Lu, X.; Wu, X. L.; Yu, C. Y.; Hu, Y. S.; Bai. Y. A high-rate capability and energy density sodium ion full cell enabled by F-doped Na2Ti3O7 hollow spheres. J. Mater. Chem. A 2022, 10, 23232–23243.

[3]

Shan, Y. L.; He, Y. Y.; Yang, N.; Zhu, X.; Liu, H. L.; Jiang, H.; Li. C. Z. Regulating steric hindrance in redox-active porous organic frameworks achieves enhanced sodium storage performance. Small 2022, 18, 2105927.

[4]
Zhu, H. W.; Wang, Z. H.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Strain engineering of Ni-rich cathode enables exceptional cyclability in pouch-type full cells. Adv. Mater., in press, https://doi.org/10.1002/ADMA.202209357.
DOI
[5]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[6]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[7]

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten. P. H. L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

[8]

Jamesh, M. I.; Prakash. A. S. Advancement of technology towards developing Na-ion batteries. J. Power Sources 2018, 378, 268–300.

[9]

Yu, C. Y.; Yang, L. Y.; Sun, S. W.; Chen, D.; Yin, Y. F.; Yang, H. Y.; Bai. Y. Enhanced Na-storage properties of O3-type NaNi0.5Mn0.5O2 cathodes by doping and coating dual-modification strategy. Ceram. Int. 2022, 48, 36715–36722.

[10]

Wu, J. X.; Lin, C.; Liang, Q. H.; Zhou, G. D.; Liu, J. P.; Liang, G. M.; Wang, M.; Li, B. H.; Hu, L.; Ciucci, F. et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 2022, 4, e12288.

[11]

Rajagopalan, R.; Zhang, Z. N.; Tang, Y. G.; Jia, C. K.; Ji, X. B.; Wang. H. Y. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials. Energy Storage Mater. 2021, 34, 171–193.

[12]

Song, W. L.; Ji, X. B.; Wu, Z. P.; Zhu, Y. R.; Yang, Y. C.; Chen, J.; Jing, M. J.; Li, F. Q.; Banks. C. E. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2014, 2, 5358–5362.

[13]

An, Q. Y.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; He, L.; Ma, D. L.; Yao, Y.; Mai. L. Q. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: Superior Li storage performance and insertion/extraction mechanism. Adv. Energy Mater. 2015, 5, 1401963.

[14]

Jing, M. X.; Zhang, J.; Han, C.; Yang, H.; Yao, S. S.; Zhu, L.; Chen, L. L.; Xie, Q. L.; Chen, X.; Shen, X. Q. et al. A flexible Na3V2(PO4)3/C composite fiber membrane cathode for Na-ion and Na-Li hybrid-ion batteries. J. Electrochem. Soc. 2018, 165, A1761–A1769.

[15]

Zhang, J. X.; Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang. H. X. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184.

[16]

Zhou, Y. P.; Zhang, X. H.; Liu, Y. J.; Xie, X. X.; Rui, X. H.; Zhang, X.; Feng, Y. Z.; Zhang, X. J.; Yu, Y.; Huang. K. M. A high-temperature Na-ion battery: Boosting the rate capability and cycle life by structure engineering. Small 2020, 16, 1906669.

[17]

Chen, R. Y.; Butenko, D. S.; Li, S. L.; Li, D. D.; Zhang, X. Y.; Cao, J. M.; Ogorodnyk, I. V.; Klyui, N. I.; Han, W.; Zatovsky. I. V. Effects of low doping on the improvement of cathode materials Na3+xV2−xMx(PO4)3 (M = Co2+, Cu2+; x = 0.01–0.05) for SIBs. J. Mater. Chem. A 2021, 9, 17380–17389.

[18]

Lee, J.; Park, S.; Park, Y.; Song, J. J.; Sambandam, B.; Mathew, V.; Hwang, J. Y.; Kim. J. Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chem. Eng. J. 2021, 422, 130052.

[19]

Wang, E. H.; Xiang, W.; Rajagopalan, R.; Wu, Z. G.; Yang, J.; Chen, M. Z.; Zhong, B. H.; Dou, S. X.; Chou, S. L.; Guo, X. D. et al. Construction of 3D pomegranate-like Na3V2(PO4)3/conducting carbon composites for high-power sodium-ion batteries. J. Mater. Chem. A 2017, 5, 9833–9841.

[20]

Gao, F. J.; Chen, D.; Yang, H. Y.; Yin, Y. F.; Yu, C. Y.; Bai. Y. Sandwich structure endows Na3V2(PO4)3 cathodes with superb sodium storage. Appl. Phys. Lett. 2022, 121, 113901.

[21]

Liang, L. W.; Li, X. Y.; Zhao, F.; Zhang, J. Y.; Liu, Y.; Hou, L. R.; Yuan. C. Z. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100287.

[22]

Lalère, F.; Seznec, V.; Courty, M.; David, R.; Chotard, J. N.; Masquelier. C. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J. Mater. Chem. A 2015, 3, 16198–16205.

[23]

Wang, Q. C.; Zhao, Y. J.; Gao, J. J.; Geng, H. Y.; Li, J. B.; Jin. H. B. Triggering the reversible reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ substitution. ACS Appl. Mater. Interfaces 2020, 12, 50315–50323.

[24]

Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough. J. B. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836–7841.

[25]

De Boisse, B. M.; Ming, J.; Nishimura, S. I.; Yamada. A. Alkaline excess strategy to NASICON-type compounds towards higher-capacity battery electrodes. J. Electrochem. Soc. 2016, 163, A1469–A1473.

[26]

Soundharrajan, V.; Nithiananth, S.; Sakthiabirami, K.; Kim, J. H.; Su, C. Y.; Chang. J. K. The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: A focused review. J. Mater. Chem. A 2022, 10, 1022–1046.

[27]

Li, J. W.; Cao, X. X.; Pan, A. Q.; Zhao, Y. L.; Yang, H. L.; Cao, G. Z.; Liang. S. Q. Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem. Eng. J. 2018, 335, 301–308.

[28]

Peng, M. H.; Zhang, D. T.; Zheng, L. M.; Wang, X. Y.; Lin, Y.; Xia, D. G.; Sun, Y. G.; Guo. G. S. Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 2017, 31, 64–73.

[29]

Zatovsky. I. V. NASICON-type Na3V2(PO4)3 [Online]. Acta Crystallogr. Sect. E Struct. Rep. 2010, 66, i12.

[30]

Bi, L. N.; Li, X. Y.; Liu, X. Q.; Zheng, Q. J.; Lin. D. M. Enhanced cycling stability and rate capability in a La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 7693–7699.

[31]

Xu, C. L.; Xiao, R. J.; Zhao, J. M.; Ding, F. X.; Yang, Y.; Rong, X. H.; Guo, X. D.; Yang, C.; Liu, H. Z.; Zhong, B. H. et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2022, 7, 97–107.

[32]

Ren, W. H.; Zheng, Z. P.; Xu, C.; Niu, C. J.; Wei, Q. L.; An, Q. Y.; Zhao, K. N.; Yan, M. Y.; Qin, M. S.; Mai. L. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153.

[33]

Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu. C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

[34]

Huang, Y. Y.; Li, X.; Wang, J. S.; Miao, L.; Li, C.; Han, J. T.; Huang. Y. H. Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater. 2018, 15, 108–115.

[35]

Shao, W.; Zhou, Y. F.; Rao, L. X.; Xing, X. L.; Shi, Z. J.; Yang. Q. X. Effect of Cr doping on interface properties of DLC/CrN composite coatings: First-principles study. Diamond Related Mater. 2022, 121, 108721.

[36]

Wu, C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; Ouyang. C. Z. Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater. 2006, 18, 1727–1732.

[37]

Li, G. S.; Feng, S. H.; Li, L. P.; Li, X. R.; Jin. W. J. Mild hydrothermal syntheses and thermal behaviors of hydrogarnets Sr3M2(OH)12 (M = Cr, Fe, and Al). Chem. Mater. 1997, 9, 2894–2901.

[38]

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl. U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

[39]

Zhang, J. Y.; Chen, Z. Y.; Wang, G. Y.; Hou, L. R.; Yuan. C. Z. Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl. Surf. Sci. 2020, 533, 147511.

[40]

Ayiania, M.; Weiss-Hortala, E.; Smith, M.; McEwen, J. S.; Garcia-Perez. M. Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon 2020, 167, 559–574.

[41]

Nistor, L. C.; Van Landuyt, J.; Ralchenko, V. G.; Kononenko, T. V.; Obraztsova, E. D.; Strelnitsky. V. E. Direct observation of laser-induced crystallization of a-C: H films. Appl. Phys. A 1994, 58, 137–144.

[42]

Liang, L. W.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Sun, J. F.; Liu, Y.; Wang, S. G.; Yuan. C. Z. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1802847.

[43]

Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang. H. X. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900.

[44]

Xu, Y. N.; Wei, Q. L.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai. L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

[45]

Cao, X. X.; Pan, A. Q.; Yin, B.; Fang, G. Z.; Wang, Y. P.; Kong, X. Z.; Zhu, T.; Zhou, J.; Cao, G. Z.; Liang. S. Q. Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 2019, 60, 312–323.

[46]

Van Hagen, R.; Lepcha, A.; Song, X. F.; Tyrra, W.; Mathur. S. Influence of electrode design on the electrochemical performance of Li3V2(PO4)3/C nanocomposite cathode in lithium ion batteries. Nano Energy 2013, 2, 304–313.

[47]

Li, S. J.; Ge, P.; Zhang, C. Y.; Sun, W.; Hou, H. S.; Ji. X. B. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. J. Power Sources 2017, 366, 249–258.

[48]

Xiong, H. L.; Sun, G.; Liu, Z. L.; Zhang, L.; Li, L.; Zhang, W.; Du, F.; Qiao. Z. A. Polymer stabilized droplet templating towards tunable hierarchical porosity in single crystalline Na3V2(PO4)3 for enhanced sodium-ion storage. Angew. Chem., Int. Ed. 2021, 60, 10334–10341.

[49]

Xu, C. L.; Zhao, J. M.; Wang, Y. A.; Hua, W. B.; Fu, Q.; Liang, X. M.; Rong, X. H.; Zhang, Q. Q.; Guo, X. D.; Yang, C. et al. Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes. Adv. Energy Mater. 2022, 12, 2200966.

[50]

Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Shi, Q.; Wang, J.; Chen, S.; Wu. F. Riveting dislocation motion: The inspiring role of oxygen vacancies in the structural stability of Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2020, 12, 37208–37217.

[51]

Hu, G. R.; Zhang, Z. Y.; Li, T. F.; Gan, Z. G.; Du, K.; Peng, Z. D.; Xia, J.; Tao, Y.; Cao. Y. B. In situ surface modification for improving the electrochemical performance of Ni-rich cathode materials by using ZrP2O7. ChemSusChem 2020, 13, 1603–1612.

[52]

Liang, L. W.; Zhang, W. H.; Denis, D. K.; Zhang, J. Y.; Hou, L. R.; Liu, Y.; Yuan. C. Z. Comparative investigations of high-rate NaCrO2 cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from −15 to 55 °C: Nanowires vs. bulk. J. Mater. Chem. A 2019, 7, 11915–11927.

[53]

Jia, M. Y.; Zhang, W. H.; Cai, X. P.; Zhan, X. J.; Hou, L. R.; Yuan, C. Z.; Guo. Z. P. Re-understanding the galvanostatic intermittent titration technique: Pitfalls in evaluation of diffusion coefficients and rational suggestions. J. Power Sources 2022, 543, 231843.

[54]

Qiu, T. Y.; Yang, L.; Xiang, Y. E.; Ye, Y.; Zou, G. Q.; Hou, H. S.; Ji. X. B. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 2021, 5, 2100188.

[55]

Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li. F. J. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022.

[56]

Wang, Y. Y.; Hou, B. H.; Guo, J. Z.; Ning, Q. L.; Pang, W. L.; Wang, J. W.; Lü, C. L.; Wu. X. L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252.

File
12274_2023_5555_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2022
Revised: 01 February 2023
Accepted: 07 February 2023
Published: 15 March 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51904115, 52072151, 52171211, 52271218, and U22A20145), Taishan Scholars (No. ts201712050), Jinan Independent Innovative Team (No. 2020GXRC015), and Major Program of Shandong Province Natural Science Foundation (No. ZR2021ZD05).

Return