Journal Home > Volume 16 , Issue 7

Electrochemical conversion of CO2 (CO2RR) into high-value fuel is identified as one of the promising approaches to achieve carbon neutrality. The synthesis of high-efficiency CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Previous studies have shown that the presence of Cu(I) is beneficial for the reduction of CO2 into C2 products. However, the stable presence of Cu(I) remains controversial, especially in the negative potential window. Here we report a simple and easily scalable catalyst precursor Cu2(OH)3Cl/C, which automatically forms in-situ chlorine-doped Cu/Cu2O hetero-interface during electrocatalysis. The catalyst not only exhibits a Faradaic efficiency of 33.03% but also provides a long-term stability of Cu+, gaining a stable electrolysis of 11 h, with an ethylene/methane ratio over 50. The experimental results and mechanistic studies confirm that the presence of Cl inhibits the reduction of Cu+, inducing the formation of Cu0/Cu+, and reduces the reaction energy of the intermediate *CO dimerization, thereby facilitating the formation of C2 products. This work provides a feasible way to synthesize copper ions with long-term and stable positive charge in CO2RR and expands a new way to synthesize ethylene industrial products in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene

Show Author's information Xin Wang1,§( )Ming Miao1,§Bowen Tang2,§Haotian Duan1Fulong Zhu1Huigang Zhang3Xian Zhang4Wen-jin Yin2( )Yongzhu Fu1( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

§ Xin Wang, Ming Miao, and Bowen Tang contributed equally to this work.

Abstract

Electrochemical conversion of CO2 (CO2RR) into high-value fuel is identified as one of the promising approaches to achieve carbon neutrality. The synthesis of high-efficiency CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Previous studies have shown that the presence of Cu(I) is beneficial for the reduction of CO2 into C2 products. However, the stable presence of Cu(I) remains controversial, especially in the negative potential window. Here we report a simple and easily scalable catalyst precursor Cu2(OH)3Cl/C, which automatically forms in-situ chlorine-doped Cu/Cu2O hetero-interface during electrocatalysis. The catalyst not only exhibits a Faradaic efficiency of 33.03% but also provides a long-term stability of Cu+, gaining a stable electrolysis of 11 h, with an ethylene/methane ratio over 50. The experimental results and mechanistic studies confirm that the presence of Cl inhibits the reduction of Cu+, inducing the formation of Cu0/Cu+, and reduces the reaction energy of the intermediate *CO dimerization, thereby facilitating the formation of C2 products. This work provides a feasible way to synthesize copper ions with long-term and stable positive charge in CO2RR and expands a new way to synthesize ethylene industrial products in the future.

Keywords: CO2 reduction reaction, ethylene, basic copper chloride, chlorine dopant, mixed-phase catalysts

References(45)

[1]

Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; van Vuuren, D. P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715.

[2]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[3]

Wang, G. X; Chen, J. X; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[4]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[5]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[6]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[7]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[8]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[9]

Hao, J. C.; Zhuang, Z. H.; Hao, J. C.; Cao, K. H.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[10]

Dong, L. Z.; Lu, Y. F.; Wang, R.; Zhou, J.; Zhang, Y.; Zhang, L.; Liu, J.; Li, S. L.; Lan, Y. Q. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 2022, 15, 10185–10193.

[11]

Bi, Q. Y.; Wang, X.; Gu, F.; Du, X. L.; Bao, H. L.; Yin, G. H.; Liu, J. J.; Huang, F. Q. Prominent electron penetration through ultrathin graphene layer from FeNi alloy for efficient reduction of CO2 to CO. ChemSusChem 2017, 10, 3044–3048.

[12]

Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

[13]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[14]

Sun, H.; Chen, L.; Xiong, L. K.; Feng, K.; Chen, Y. F.; Zhang, X.; Yuan, X. Z.; Yang, B. Y.; Deng, Z.; Liu, Y. et al. Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat. Commun. 2021, 12, 6823.

[15]

Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. E.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species. Angew. Chem., Int. Ed. 2022, 61, e202205909.

[16]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[17]

Zhao, X.; Ma, X. W.; Chen, B. Y.; Shang, Y. P.; Song, M. L. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour, Conserv. Recy. 2022, 176, 105959.

[18]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2019, 3, 98–106.

[19]

Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 2015, 5, 4293–4299.

[20]

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.

[21]

Ji, Y. L.; Chen, Z.; Wei, R. L.; Yang, C.; Wang, Y. H.; Xu, J.; Zhang, H.; Guan, A. X.; Chen, J. T.; Sham, T. K. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu-Pd sites. Nat. Catal. 2022, 5, 251–258.

[22]

Wen, G. B.; Lee, D. U.; Ren, B. H.; Hassan, F. M.; Jiang, G. P; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z. Y.; Yang, L. et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 2018, 8, 1802427.

[23]

Jiang, X.; Koizumi, N.; Guo, X. W.; Song, C. S. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol. Appl. Catal. B: Environ. 2015, 170–171, 173–185.

[24]

He, J. F.; Johnson, N. J. J.; Huang, A. X.; Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57.

[25]

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.

[26]

Wang, J. H.; Yang, H.; Liu, Q. Q.; Liu, Q.; Li, X. T.; Lv, X. Z.; Cheng, T.; Wu, H. B. Fastening Br ions at copper-molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 2021, 6, 437–444.

[27]

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

[28]

Gao, Y. Q.; Wu, Q.; Liang, X. Z.; Wang, Z. Y.; Zheng, Z. K.; Wang, P.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 2020, 7, 1902820.

[29]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[30]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, 15, 1730–1752.

[31]

Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.

[32]

Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X. L.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A. S. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: Tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem., Int. Ed. 2020, 59, 17974–17983.

[33]

Favaro, M.; Xiao, H.; Cheng, T.; Goddard III, W. A.; Yano, J.; Crumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu (111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6706–6711.

[34]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[35]

Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; De Luna, P.; Dinh, C. T.; Hu, Y. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.

[36]

Cao, Z.; Kim, D.; Hong, D. C.; Yu, Y.; Xu, J.; Lin, S.; Wen, X. D.; Nichols, E. M.; Jeong, K.; Reimer, J. A. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125.

[37]

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

[38]

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[40]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[41]

Tang, B. W.; Liu, Y.; Deng, D. W.; Xu, Y.; Wen, B.; Tang, Z. K.; Wei, X. L.; Ge, Q. X.; Yin, W. J. P-block atom modified Sn (200) surface as a promising electrocatalyst for two-electron CO2 reduction: A first-principles study. Phys. Chem. Chem. Phys. 2022, 24, 26556–26563.

[42]

An, X. W.; Li, S. S.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustainable Chem. Eng. 2019, 7, 9360–9368.

[43]

Wang, H.; Zhang, Z.; Yin, H. Y.; Wu, Y. Synthesis of Cu2(OH)3Cl as facile and effective Fenton catalysts for mineralizing aromatic contaminants: Combination of σ-Cu-ligand and self-redox property. Appl. Catal. A:Gen. 2021, 614, 118055.

[44]

Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

[45]

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

File
12274_2023_5554_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 December 2022
Revised: 02 February 2023
Accepted: 07 February 2023
Published: 02 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of Henan province (No. 212300410281), the National Key Research and Development Program of China (No. 2020YFA0406104), and the National Natural Science Foundation of China (No. 22001263).

Return