Journal Home > Volume 16 , Issue 7

Searching for new promising electrocatalysts with favorable architectures allowing abundant active sites and remarkable structure stability is an urgent task for the practical application of lithium-sulfur (Li-S) batteries. Herein, inspired by the structure of natural cactus, a new efficient and robust electrocatalyst with three-dimensional (3D) hierarchical cactus-like architecture constructed by functional zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) components is developed. The cactus-inspired catalyst (denoted as Co@NCNT/NCNS) consists of N-doped carbon nanosheets (NCNS) and standing N-doped carbon nanotubes (NCNT) forest with embedded Co nanoparticles on the top of NCNT, which was achieved by an in situ catalytic growth technique. The unique structure design integrates the advantages of 0D Co accelerating catalytic redox reactions, 1D NCNT providing a fast electron pathway, and 2D NCNS assuring strong structure stability. Especially, the rich Mott–Schottky heterointerfaces between metallic Co and semiconductive NCNT can further facilitate the electron transfer, thus improving the electrocatalyst activity. Consequently, a Li-S battery with the Co@NCNT/NCNS modified separator achieves ultra-long cycle life over 4000 cycles at 2 C with ultralow capacity decay of 0.016% per cycle, much superior over that of recently reported batteries. This work provides a new strategy for developing ultra-stable catalysts towards long-life Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Formation of hierarchically 3D cactus-like architecture as efficient Mott–Schottky electrocatalyst for long-life Li-S batteries

Show Author's information Biao Wang1,2Yilun Ren1Shaowei Chen1Qingxi Zhai1Yuxuan Shi1Yujie Ma1Shaochun Tang1,2( )Xiangkang Meng1( )
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Haian Institute of High-Tech Research, Nanjing University, Nanjing 226600, China

Abstract

Searching for new promising electrocatalysts with favorable architectures allowing abundant active sites and remarkable structure stability is an urgent task for the practical application of lithium-sulfur (Li-S) batteries. Herein, inspired by the structure of natural cactus, a new efficient and robust electrocatalyst with three-dimensional (3D) hierarchical cactus-like architecture constructed by functional zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) components is developed. The cactus-inspired catalyst (denoted as Co@NCNT/NCNS) consists of N-doped carbon nanosheets (NCNS) and standing N-doped carbon nanotubes (NCNT) forest with embedded Co nanoparticles on the top of NCNT, which was achieved by an in situ catalytic growth technique. The unique structure design integrates the advantages of 0D Co accelerating catalytic redox reactions, 1D NCNT providing a fast electron pathway, and 2D NCNS assuring strong structure stability. Especially, the rich Mott–Schottky heterointerfaces between metallic Co and semiconductive NCNT can further facilitate the electron transfer, thus improving the electrocatalyst activity. Consequently, a Li-S battery with the Co@NCNT/NCNS modified separator achieves ultra-long cycle life over 4000 cycles at 2 C with ultralow capacity decay of 0.016% per cycle, much superior over that of recently reported batteries. This work provides a new strategy for developing ultra-stable catalysts towards long-life Li-S batteries.

Keywords: lithium-sulfur batteries, shuttle effect, multifunctional separator, enhanced catalytic activity, Mott–Schottky electrocatalyst

References(50)

[1]

Cheng, M. H.; Yan, R.; Yang, Z.; Tao, X. F.; Ma, T.; Cao, S. J.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: Principles and active centers. Adv. Sci. 2022, 9, 2102217.

[2]

Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

[3]

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

[4]

Zhang, C. Q.; Du, R. F.; Biendicho, J. J.; Yi, M. J.; Xiao, K.; Yang, D. W.; Zhang, T.; Wang, X.; Arbiol, J.; Llorca, J. et al. Tubular CoFeP@CN as a Mott–Schottky catalyst with multiple adsorption sites for robust lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100432.

[5]

Li, R. L.; Rao, D. W.; Zhou, J. B.; Wu, G.; Wang, G. Z.; Zhu, Z. X.; Han, X.; Sun, R. B.; Li, H.; Wang, C. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 2021, 12, 3102.

[6]

Yang, D. W.; Liang, Z. F.; Zhang, C. Q.; Biendicho, J. J.; Botifoll, M.; Spadaro, M. C.; Chen, Q. L.; Li, M. Y.; Ramon, A.; Moghaddam, A. O. et al. NbSe2 meets C2N: A 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101250.

[7]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2–MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021, 15, 20478–20488.

[8]

Wang, B.; Sun, D. Y.; Ren, Y. L.; Zhou, X. Y.; Ma, Y. J.; Tang, S. C.; Meng, X. K. MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-life lithium-sulfur batteries. J. Mater. Sci. Technol. 2022, 125, 97–104.

[9]

Wang, L.; Liu, S. K.; Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

[10]

Liu, S. J.; Liu, X. F.; Chen, M. F.; Wang, D.; Ge, X.; Zhang, W.; Wang, X. Y.; Wang, C. H.; Qin, T. T.; Qin, H. Z. et al. High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Res. 2022, 15, 7199–7208.

[11]

Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

[12]

Sun, W. W.; Liu, S. K.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hong, X. B.; Xie, K.; Ma, Z. Y.; Zheng, C. M.; Xiong, S. Z. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205471.

[13]

Li, Y. J.; Wang, W. Y.; Zhang, B.; Fu, L.; Wan, M. T.; Li, G. C.; Cai, Z.; Tu, S. B.; Duan, X. R.; Seh, Z. W. et al. Manipulating redox kinetics of sulfur species using Mott–Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 2021, 21, 6656–6663.

[14]

Huang, J. Q.; Xu, Z. L.; Abouali, S.; Akbari Garakani, M.; Kim, J. K. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 2016, 99, 624–632.

[15]

Jeong, Y. C.; Kim, J. H.; Kwon, S. H.; Oh, J. Y.; Park, J.; Jung, Y.; Lee, S. G.; Yang, S. J.; Park, C. R. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 23909–23918.

[16]

Wu, W. L.; Pu, J.; Wang, J.; Shen, Z. H.; Tang, H. Y.; Deng, Z. T.; Tao, X. Y.; Pan, F.; Zhang, H. G. Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv. Energy Mater. 2018, 8, 1702373.

[17]

Mei, J.; Liao, T.; Spratt, H.; Ayoko, G. A.; Zhao, X. S.; Sun, Z. Q. Honeycomb-inspired heterogeneous bimetallic Co–Mo oxide nanoarchitectures for high-rate electrochemical lithium storage. Small Methods 2019, 3, 1900055.

[18]

Mei, J.; Liao, T.; Peng, H.; Sun, Z. Q. Bioinspired materials for energy storage. Small Methods 2022, 6, 2101076.

[19]

Li, X.; Wu, H. J.; Elshahawy, A. M.; Wang, L.; Pennycook, S. J.; Guan, C.; Wang, J. Cactus-like NiCoP/NiCo–OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 2018, 28, 1800036.

[20]

Li, X. J.; Yang, Y.; Liu, L. Y.; Chen, Y. Y.; Chu, M.; Sun, H. F.; Shan, W. T.; Chen, Y. 3D-printed cactus-inspired spine structures for highly efficient water collection. Adv. Mater. Interfaces 2020, 7, 1901752.

[21]

Li, T. F.; Yin, J. W.; Sun, D. M.; Zhang, M. Y.; Pang, H.; Xu, L.; Zhang, Y. W.; Yang, J.; Tang, Y. W.; Xue, J. M. Manipulation of Mott–Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022, 18, 2106592.

[22]

Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS–SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

[23]

Pu, J.; Gong, W. B.; Shen, Z. X.; Wang, L. T.; Yao, Y. G.; Hong, G. CoNiO2/Co4N heterostructure nanowires assisted polysulfide reaction kinetics for improved lithium-sulfur batteries. Adv. Sci. 2022, 9, 2104375.

[24]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[25]

Mou, J. R.; Li, Y. J.; Liu, T.; Zhang, W. J.; Li, M.; Xu, Y. T.; Zhong, L.; Pan, W. H.; Yang, C. H.; Huang, J. L. et al. Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded co nanoparticles as efficient sulfur immobilizers for room temperature sodium-sulfur batteries. Small Methods 2021, 5, 2100455.

[26]

Pan, H.; Cheng, Z. B.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Res. 2022, 15, 8091–8100.

[27]

Wang, B.; Hu, Q. Q.; Hu, J. L.; Zhang, L. Z. Hierarchical porous carbon membrane embedded with pyrolyzed Co-based metal-organic frameworks as multifunctional interlayers for advanced Li-SeS2 batteries. Energy Technol. 2021, 9, 2100274.

[28]

Liu, L. N.; Wang, Y.; Yan, F.; Zhu, C. L.; Geng, B.; Chen, Y. J.; Chou, S. L. Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods 2020, 4, 1900571.

[29]

Hu, Q. Q.; Wang, B.; Chang, S. Y.; Yang, C.; Hu, Y. J.; Cao, S. B.; Lu, J. Q.; Zhang, L. Z.; Hong, Y. Effects of annealing temperature on electrochemical performance of SnSx embedded in hierarchical porous carbon with N-carbon coating by in situ structural phase transformation as anodes for lithium ion batteries. J. Mater. Sci. Technol. 2021, 84, 191–199.

[30]

Wang, B.; Hu, J. L.; Zhang, L. Z. Nitrogen and sulfur co-doped hierarchical porous carbon as functional sulfur host for lithium-sulfur batteries. Mater. Today Commun. 2021, 27, 102312.

[31]

Shen, C. L.; Li, Y.; Gong, M. J.; Zhou, C.; An, Q. Y.; Xu, X.; Mai, L. Q. Ultrathin cobalt phthalocyanine@graphene oxide layer-modified separator for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 60046–60053.

[32]

Ren, Y. L.; Zhai, Q. X.; Wang, B.; Hu, L. B.; Ma, Y. J.; Dai, Y. M.; Tang, S. C.; Meng, X. K. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li–S batteries. Chem. Eng. J. 2022, 439, 135535.

[33]

Ye, Z. Q.; Jiang, Y.; Yang, T. Y.; Li, L.; Wu, F.; Chen, R. J. Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 2022, 9, 2103456.

[34]

Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424.

[35]

Gao, N.; Zhang, Y. J.; Chen, C.; Li, B.; Li, W. B.; Lu, H. Q.; Yu, L.; Zheng, S. M.; Wang, B. Low-temperature Li-S battery enabled by CoFe bimetallic catalysts. J. Mater. Chem. A 2022, 10, 8378–889.

[36]

Yang, X. Y.; Chen, S.; Gong, W. B.; Meng, X. D.; Ma, J. P.; Zhang, J.; Zheng, L. R.; Abruña, H. D.; Geng, J. X. Kinetic enhancement of sulfur cathodes by N-doped porous graphitic carbon with bound VN nanocrystals. Small 2020, 16, 2004950.

[37]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

[38]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 2021, 33, 2103050.

[39]

Wang, B.; Wang, L.; Zhang, B.; Kong, Z.; Zeng, S. Y.; Zhao, M. W.; Qian, Y. T.; Xu, L. Q. Ultrafine zirconium boride nanoparticles constructed bidirectional catalyst for ultrafast and long-lived lithium-sulfur batteries. Energy Storage Mater. 2022, 45, 130–141.

[40]

Liu, M. L.; Chen, P.; Pan, X. C.; Pan, S. C.; Zhang, X.; Zhou, Y.; Bi, M.; Sun, J. W.; Yang, S. L.; Vasiliev, A. L. et al. Synergism of flame-retardant, self-healing, high-conductive and polar to a multi-functional binder for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205031.

[41]

Xia, J. Y.; Hua, W. X.; Wang, L.; Sun, Y. F.; Geng, C. N.; Zhang, C.; Wang, W. C.; Wan, Y.; Yang, Q. H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li-S batteries. Adv. Func. Mater. 2021, 31, 2101980.

[42]

Ge, W. N.; Wang, L.; Li, C. C.; Wang, C. S.; Wang, D. B.; Qian, Y. T.; Xu, L. Q. Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 6276–6282.

[43]

Kong, Z. K.; Li, Y.; Wang, Y. L.; Zhang, Y. Z.; Shen, K. L.; Chu, X.; Wang, H. C.; Wang, J. Y.; Zhan, L. Monodispersed MnOx-CeO2 solid solution as superior electrocatalyst for Li2S precipitation and conversion. Chem. Eng. J. 2020, 392, 123697.

[44]

Waqas, M.; Han, Y. P.; Chen, D. J.; Ali, S.; Zhen, C.; Feng, C.; Yuan, B. T.; Han, J. C.; He, W. D. Molecular “capturing” and “seizing” MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li-S batteries. Energy Storage Mater. 2020, 27, 333–341.

[45]

Yang, J. L.; Zhao, S. X.; Lu, Y. M.; Zeng, X. T.; Lv, W.; Cao, G. Z. In situ topochemical nitridation derivative MoO2-Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-sulfur batteries. Nano Energy 2020, 68, 104356.

[46]

Zhang, Y. Z.; Ge, X.; Kang, Q.; Kong, Z. K.; Wang, Y. L.; Zhan, L. Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124570.

[47]

Chen, K.; Zhang, G. D.; Xiao, L. P.; Li, P. W.; Li, P. W.; Xu, Q. C.; Xu, J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods 2021, 5, 2001056.

[48]

Gao, N.; Li, B.; Zhang, Y. J.; Li, W. B.; Li, X.; Zhao, J.; Yue, W. C.; Xing, Z. Y.; Wang, B. CoFe alloy-decorated interlayer with a synergistic catalytic effect improves the electrochemical kinetics of polysulfide conversion. ACS Appl. Mater. Interfaces 2021, 13, 57193–57203.

[49]

Zhu, Y.; Wu, X. D.; Li, M. R.; Ji, Y. X.; Li, Q.; He, X. X.; Lei, Z. B.; Liu, Z. H.; Jiang, R. B.; Sun, J. Synthesis of titanium molybdenum nitride-decorated electrospun carbon nanofiber membranes as interlayers to suppress polysulfide shuttling in lithium-sulfur batteries. ACS Sustain. Chem. Eng. 2022, 10, 776–788.

[50]

Zhu, Y. J.; Zuo, Y. Z.; Ye, F.; Zhou, J.; Tang, Y. F.; Chen, Y. F. Dual-regulation strategy to enhance electrochemical catalysis ability of NiCo2O4−x for polysulfides conversion in Li-S batteries. Chem. Eng. J. 2022, 428, 131109.

File
12274_2023_5551_MOESM1_ESM.pdf (4.1 MB)
12274_2023_5551_MOESM2_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2022
Revised: 28 January 2023
Accepted: 05 February 2023
Published: 28 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was jointly supported by the National key research and development program (No. 2022YFA1602700), Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund (No. BE2022605), the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (Nos. BE2020684 and BE2022332), and the Fundamental Research Funds for the Central Universities.

Return