AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic realization of high efficiency solar desalination and carbon dioxide reduction

Xiaoying Song1Pei Wang1Yi Huang1( )Xiaoqiang Zhu2U-Fat Chio1Fang Wang1Guanyu Wang1( )Wei Wang1Bin Liu3
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

A synergistic solution for solar-driven desalination and CO2 reduction at the surface of sea using a titanium oxide-gold (TiO2-Au NW/NPs (NW: nanowire, NP: nanoparticle)) semiconductor/metal photothermal conversion membrane that can efficiently reduce global warming and harm to marine life caused by ocean acidification while producing pure water.

Abstract

Methods of seawater desalination and carbon dioxide (CO2) reduction using clean and renewable energy have attracted much attention withing the reducing fresh water and growing CO2 concentration. Here, we propose a synergistic method for solar-driven desalination and CO2 reduction at the surface of sea using a three-dimensional titanium oxide-gold semiconductor/metal (TiO2-Au NW/NPs (NW: nanowire, NP: nanoparticle)) photothermal conversion membrane that can efficiently harvest a broad solar spectrum (200 to 2500 nm, 94%) to undertake the conversion of light-to-heat and light-to-electricity. The TiO2-Au NW/NPs membrane demonstrated a high solar vapor conversion efficiency of ~ 90%, CO2 reduction yields of 0.066 μmol·cm−2 CH4 and 0.015 μmol·cm−2 CO within 5 h. In addition, the membrane efficiently evaporated seawater with different salt concentrations to produce drinking water which meet World Health Organization (WHO) and US Environmental Protection Agency (EPA) standards. This work provides an integrated solution for solar desalination and CO2 reduction at the surface of sea to reduce the harm to marine life caused by ocean acidification while producing pure water.

Electronic Supplementary Material

Download File(s)
12274_2023_5546_MOESM1_ESM.pdf (766.8 KB)
12274_2023_5546_MOESM2_ESM.pdf (1.2 MB)

References

[1]

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, eaad1920.

[2]

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

[3]

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

[4]

Han, X. M.; Besteiro, L. V.; Koh, C. S. L.; Lee, H. K.; Phang, I. Y.; Phan-Quang, G. C.; Ng, J. Y.; Sim, H. Y. F.; Lay, C. L.; Govorov, A. et al. Intensifying heat using MOF-isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency. Adv. Funct. Mater. 2021, 31, 2008904.

[5]

Nawaz, F.; Yang, Y. W.; Zhao, S. H.; Sheng, M. H.; Pan, C.; Que, W. X. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 2021, 9, 16233–16254.

[6]

Sheng, M. H.; Yang, Y. W.; Bin, X. Q.; Zhao, S. H.; Pan, C.; Nawaz, F.; Que, W. X. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468.

[7]

Yao, H. Z.; Zhang, P. P.; Yang, C.; Liao, Q. H.; Hao, X. Z.; Huang, Y. X.; Zhang, M.; Wang, X. B.; Lin, T. Y.; Cheng, H. H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 2021, 14, 5330–5338.

[8]

Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T. M.; Morikawa, T.; Kudo, A. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives. J. Am. Chem. Soc. 2022, 144, 2323–2332.

[9]

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

[10]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

[11]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[12]

Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

[13]

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

[14]

Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

[15]

Sharon, H.; Reddy, K. S. A review of solar energy driven desalination technologies. Renew. Sust. Energy Rev. 2015, 41, 1080–1118.

[16]

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

[17]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[18]

Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

[19]

Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

[20]

Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

[21]

Wang, F.; Xu, N.; Zhao, W.; Zhou, L.; Zhu, P. C.; Wang, X. Y.; Zhu, B.; Zhu, J. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 2021, 5, 1602–1612.

[22]

Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

[23]

Lei, C. X.; Guan, W. X.; Guo, Y. H.; Shi, W.; Wang, Y. Y.; Johnston, K. P.; Yu, G. H. Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem., Int. Ed. 2022, 61, e202208487.

[24]

Yang, L. P.; Sun, T. Y.; Tang, J. B.; Shao, Y.; Li, N. B.; Shen, A. Q.; Chen, J. L.; Zhang, Y. F.; Liu, H.; Xue, G. B. Photovoltaic-multistage desalination of hypersaline waters for simultaneous electricity, water and salt harvesting via automatic rinsing. Nano Energy 2021, 87, 106163.

[25]

Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

[26]

Zhu, L.; Sun, L.; Zhang, H.; Aslan, H.; Sun, Y.; Huang, Y. D.; Rosei, F.; Yu, M. A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 2021, 14, 2451–2459.

[27]

Gao, X.; Ren, H. Y.; Zhou, J. Y.; Du, R.; Yin, C.; Liu, R.; Peng, H. L.; Tong, L. M.; Liu, Z. F.; Zhang, J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 2017, 29, 5777–5781.

[28]

Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

[29]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[30]

Xu, J. J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z. L.; Huang, F. Q. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy 2018, 53, 425–431.

[31]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

[32]

Song, X. Y.; Song, H. C.; Xu, N.; Yang, H. F.; Zhou, L.; Yu, L. W.; Zhu, J.; Chen, K. J. Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. J. Mater. Chem. A 2018, 6, 22976–22986.

[33]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[34]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[35]

Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

[36]

Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018.

[37]

Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

[38]

Chen, W.; Chen, S. Y.; Liang, T. F.; Zhang, Q.; Fan, Z. L.; Yin, H.; Huang, K. W.; Zhang, X. X.; Lai, Z. P.; Sheng, P. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 2018, 13, 345–350.

[39]

Morelos-Gomez, A.; Cruz-Silva, R.; Muramatsu, H.; Ortiz-Medina, J.; Araki, T.; Fukuyo, T.; Tejima, S.; Takeuchi, K.; Hayashi, T.; Terrones, M. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 2017, 12, 1083–1088.

[40]

Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

[41]

Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

[42]

Chen, X.; Jin, F. M. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Front. Energy 2019, 13, 207–220.

[43]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[44]

Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

[45]

Shi, Q. J.; Li, Z. J.; Chen, L.; Zhang, X. L.; Han, W. H.; Xie, M. Z.; Yang, J. L.; Jing. L. Q. Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl. Catal. B: Environ. 2019, 244, 641–649.

[46]

Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

[47]

Li, R.; Zhu, Y. B.; Di, Y.; Liu, D. X.; Li, B.; Zhong, W. Fabrication of ordered Au nanoparticles array and its optical absorption properties. Acta Phys. Sin. 2013, 62, 198101.

[48]
Grigull, U.; Straub, S.; Schiebener, P. Tables of the properties of ordinary water substance. In Steam Tables in SI-Units/Wasserdampftafeln. Grigull, U.; Straub, J.; Schiebener, P., Eds.; Springer: Berlin, 1990; pp 13–128.
Nano Research
Pages 10530-10536
Cite this article:
Song X, Wang P, Huang Y, et al. Synergistic realization of high efficiency solar desalination and carbon dioxide reduction. Nano Research, 2023, 16(7): 10530-10536. https://doi.org/10.1007/s12274-023-5546-9
Topics:

789

Views

7

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 12 October 2022
Revised: 01 February 2023
Accepted: 05 February 2023
Published: 02 April 2023
© Tsinghua University Press 2023
Return