Journal Home > Volume 16 , Issue 7

The catalytic performance of TiO2 in photoreduction of CO2 is limited by its weak absorption in the visible range. In this work, a photonic crystal supported blue TiO2 photocatalyst (BTPC) was prepared to demonstrate a 5–6 times higher activity and improved CH4 selectivity compared to the BT catalysts deposited on quartz plate. By investigating the influence of the reflection intensity and wavelength of PC support, the superior catalytic performance was found to be originated from the enhanced light absorption of BT and the increased surface electron density brought by the PC support. Based on the study of BT loading on support, multilayer BTPC catalyst was designed to take the most advantage of the transmitted light and achieve a higher conversion of CO2 in the unit area of irradiation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancement of CO2 photoreduction efficiency by supporting blue TiO2 with photonic crystal substrate

Show Author's information Dengpeng Lan1Wenting Sheng1Qianqian Fu1Jianping Ge1,2( )
School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
Institute of Eco-Chongming, Shanghai 202162, China

Abstract

The catalytic performance of TiO2 in photoreduction of CO2 is limited by its weak absorption in the visible range. In this work, a photonic crystal supported blue TiO2 photocatalyst (BTPC) was prepared to demonstrate a 5–6 times higher activity and improved CH4 selectivity compared to the BT catalysts deposited on quartz plate. By investigating the influence of the reflection intensity and wavelength of PC support, the superior catalytic performance was found to be originated from the enhanced light absorption of BT and the increased surface electron density brought by the PC support. Based on the study of BT loading on support, multilayer BTPC catalyst was designed to take the most advantage of the transmitted light and achieve a higher conversion of CO2 in the unit area of irradiation.

Keywords: photocatalyst, CO2, blue TiO2, photonic crystal support, photo reduction

References(41)

[1]

Bae, K. L.; Kim, J.; Lim, C. K.; Nam, K. M.; Song. H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 2017, 8, 1156.

[2]

Yu, B. C.; Zhou, Y.; Li, P.; Tu, W. G.; Li, P.; Tang, L. Q.; Ye, J. H.; Zou. Z. G. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 11870–11874.

[3]

Wang, Y.; Shang, X. T.; Shen, J. N.; Zhang, Z. Z.; Wang, D. B.; Lin, J. J.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X.; Li. C. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 2020, 11, 3043.

[4]

Tang, J. Y.; Guo, R. T.; Zhou, W. G.; Huang, C. Y.; Pan. W. G. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B 2018, 237, 802–810.

[5]

Vu, N. N.; Kaliaguine, S.; Do. T. O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight—Driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater. 2019, 29, 1901825.

[6]

Crake, A.; Christoforidis, K. C.; Gregg, A.; Moss, B.; Kafizas, A.; Petit. C. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small 2019, 15, 1805473.

[7]

Rajaraman, T. S.; Parikh, S. P.; Gandhi. V. G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 123918.

[8]

Huang, Y.; Li, K.; Zhou, J. C.; Guan, J.; Zhu, F. F.; Wang, K.; Liu, M. C.; Chen, W. S.; Li. N. X. Nitrogen-stabilized oxygen vacancies in TiO2 for site-selective loading of Pt and CoOx cocatalysts toward enhanced photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 439, 135744.

[9]

Li, K.; Peng, B. S.; Jin, J. P.; Zan, L.; Peng. T. Y. Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Appl. Catal. B 2017, 203, 910–916.

[10]

Xu, C. Y.; Huang, W. H.; Li, Z.; Deng, B. W.; Zhang, Y. W.; Ni, M. J.; Cen. K. F. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catal. 2018, 8, 6582–6593.

[11]

Sekar, K.; Chuaicham, C.; Vellaichamy, B.; Li, W.; Zhuang, W.; Lu, X. H.; Ohtani, B.; Sasaki. K. Cubic Cu2O nanoparticles decorated on TiO2 nanofiber heterostructure as an excellent synergistic photocatalyst for H2 production and sulfamethoxazole degradation. Appl. Catal. B 2021, 294, 120221.

[12]

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao. S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

[13]

Xuan, X. N.; Tu, S. C.; Yu, H. J.; Du, X.; Zhao, Y. J.; He, J. H.; Dong, H. F.; Zhang, X. J.; Huang. H. W. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Appl. Catal. B 2019, 255, 117768.

[14]

Zhang, W.; He, H. L.; Tian, Y.; Li, H. Z.; Lan, K.; Zu, L. H.; Xia, Y.; Duan, L. L.; Li, W.; Zhao. D. Y. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy 2019, 66, 104113.

[15]

Katal, R.; Salehi, M.; Davood Abadi Farahani, M. H.; Masudy-Panah, S.; Ong, S. L.; Hu. J. Y. Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl. Mater. Interfaces 2018, 10, 35316–35326.

[16]

Tan, H. Q.; Zhao, Z.; Niu, M.; Mao, C. Y.; Cao, D. P.; Cheng, D. J.; Feng, P. Y.; Sun. Z. C. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6, 10216–10223.

[17]

Chen, Y. W.; Li, L. L.; Xu, Q. L.; Chen, W.; Dong, Y. Q.; Fan, J. J.; Ma. D. K. Recent advances in opal/inverted opal photonic crystal photocatalysts. Solar RRL 2021, 5, 2000541.

[18]

Zheng, X. Z.; Zhang. L. W. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511–2532.

[19]

Wei, Y. C.; Jiao, J. Q.; Zhao, Z.; Liu, J.; Li, J. M.; Jiang, G. Y.; Wang, Y. J.; Duan. A. J. Fabrication of inverse opal TiO2-supported Au@CdS core–shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B 2015, 179, 422–432.

[20]

Tang, Z. L.; Wang, C. J.; He, W. J.; Wei, Y. C.; Zhao, Z.; Liu. J. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chin. Chem. Lett. 2022, 33, 939–942.

[21]

Li, Y. F.; Tang, J. J.; Wei, Y. C.; He, W. J.; Tang, Z. L.; Zhang, X.; Xiong, J.; Zhao, Z. The heterojunction between 3D ordered macroporous TiO2 and MoS2 nanosheets for enhancing visible-light driven CO2 reduction. J. CO2 Util. 2021, 51, 101648.

[22]

Wu, X. J.; Lan, D. P.; Zhang, R. F.; Pang, F.; Ge. J. P. Fabrication of opaline ZnO photonic crystal film and its slow-photon effect on photoreduction of carbon dioxide. Langmuir 2019, 35, 194–202.

[23]

Zeng, S.; Vahidzadeh, E.; VanEssen, C. G.; Kar, P.; Kisslinger, R.; Goswami, A.; Zhang, Y.; Mahdi, N.; Riddell, S.; Kobryn, A. E. et al. Optical control of selectivity of high rate CO2 photoreduction via interband- or hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst. Appl. Catal. B 2020, 267, 118644.

[24]

Rahul, T. K.; Mohan, M.; Sandhyarani. N. Enhanced solar hydrogen evolution over in situ gold-platinum bimetallic nanoparticle-loaded Ti3+ self-doped titania photocatalysts. ACS Sustainable Chem. Eng. 2018, 6, 3049–3059.

[25]

Zhao, H.; Hu, Z. Y.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su. B. L. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy 2018, 47, 266–274.

[26]

Li, X. F.; Wang, C. Q.; Li, B.; Shao, Y.; Li. D. Z. Efficient light harvesting over a CdS/In2O3 photonic crystal photocatalyst for hydrogenation of 4-nitroaniline to p-phenylenediamine. Phys. Chem. Chem. Phys. 2016, 18, 27848–27857.

[27]

Li, Y.; Liu, F. T.; Chang, Y.; Wang, J.; Wang. C. W. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p–n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays. Appl. Surf. Sci. 2017, 426, 770–780.

[28]

Jelle, A. A.; Ghuman, K. K.; O'Brien, P. G.; Hmadeh, M.; Sandhel, A.; Perovic, D. D.; Singh, C. V.; Mims, C. A.; Ozin. G. A. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support. Adv. Energy Mater. 2018, 8, 1702277.

[29]

Wu, Y. T.; Lu, J.; Li, M. L.; Yuan, J.; Wu, P. H.; Chang, X. J.; Liu, C. Q.; Wang. X. F. Bismuth silicate photocatalysts with enhanced light harvesting efficiency by photonic crystal. J. Alloys Compd. 2019, 810, 151839.

[30]

Li, P.; Chen, S. L.; Wang, A. J.; Wang. Y. Probing photon localization effect between titania and photonic crystals on enhanced photocatalytic activity of titania film. Chem. Eng. J. 2016, 284, 305–314.

[31]

Sun, S. M.; Wang, W. Z.; Zhang, L.; Xu. J. H. Bi2WO6/SiO2 photonic crystal film with high photocatalytic activity under visible light irradiation. Appl. Catal. B 2012, 125, 144–148.

[32]

Pang, F.; Jiang, Y. T.; Zhang, Y. Q.; He, M. Y.; Ge. J. P. Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support. J. Mater. Chem. A 2015, 3, 21439–21443.

[33]

Zhang, R. F.; Zeng, F.; Pang, F.; Ge. J. P. Substantial enhancement toward the photocatalytic activity of CdS quantum dots by photonic crystal-supporting films. ACS Appl. Mater. Interfaces 2018, 10, 42241–42248.

[34]

Sorcar, S.; Hwang, Y.; Grimes, C. A.; In. S. I. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater. Today 2017, 20, 507–515.

[35]

He, Y. Y.; Liu, L. Y.; Fu, Q. Q.; Ge. J. P. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and durable fabrics with saturated structural colors. Adv. Funct. Mater. 2022, 32, 2200330.

[36]

Wang, C.; Lin, X.; Schäfer, C. G.; Hirsemann, S.; Ge. J. P. Spray synthesis of photonic crystal based automotive coatings with bright and angular—Dependent structural colors. Adv. Funct. Mater. 2021, 31, 2008601.

[37]

Zhang, X.; Luo, L.; Yun, R. P.; Pu, M.; Zhang, B.; Xiang. X. Increasing the activity and selectivity of TiO2-supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects. ACS Sustainable Chem. Eng. 2019, 7, 13856–13864.

[38]

Yan, Y.; Han, M. Y.; Konkin, A.; Koppe, T.; Wang, D.; Andreu, T.; Chen, G.; Vetter, U.; Morante, J. R.; Schaaf. P. Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J. Mater. Chem. A 2014, 2, 12708–12716.

[39]

Wu, Y. T.; Liu, Q. J.; Liu, T. T.; Wang, J. R.; Xu. S. M. The construction of photonic crystal/Cu2+ doped TiO2–SiO2 multilayer structured film for enhanced visible light photocatalytic performance: The synergistic effect between the different layers. J. Alloys Compd. 2022, 911, 164768.

[40]

Wang, Q. T.; Fang, Z. X.; Zhao, X. K.; Dong, C. L.; Li, Y.; Guo, C. P.; Liu, Q. L.; Song, F.; Zhang. W. Biotemplated g-C3N4/Au periodic hierarchical structures for the enhancement of photocatalytic CO2 reduction with localized surface plasmon resonance. ACS Appl. Mater. Interfaces 2021, 13, 59855–59866.

[41]

Xiong, Z.; Lei, Z.; Kuang, C. C.; Chen, X. X.; Gong, B. E.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G.; Wu. J. C. S. Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Appl. Catal. B 2017, 202, 695–703.

File
12274_2023_5545_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2023
Revised: 31 January 2023
Accepted: 01 February 2023
Published: 21 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22172054 and 21972046).

Return