AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets

Yige Yao1,§Xiaotian Bao2,§Yunke Zhu1Xinyu Sui2An Hu1Peng Bai1Shufeng Wang1,4,5,6Hong Yang1,4,5,6Xinfeng Liu2,3,7( )Yunan Gao1,4,5,6( )
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Frontiers Science Center for Nano-optoelectronics, Beijing 100871, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China

§ Yige Yao and Xiaotian Bao contributed equally to this work.

Show Author Information

Graphical Abstract

Core/crown structure regulates charge carrier transfer and biexciton interaction in nanoplatelets.

Abstract

Charge carrier dynamics essentially determines the performance of various optoelectronic applications of colloidal semiconductor nanocrystals. Among them, two-dimensional nanoplatelets provide new adjustment freedom for their unique core/crown heterostructures. Herein, we demonstrate that by fine-tuning the core size and the lateral quantum confinement, the charge carrier transfer rate from the crown to the core can be varied by one order of magnitude in CdSe/CdSeS core/alloy-crown nanoplatelets. In addition, the transfer can be affected by a carrier blocking mechanism, i.e., the filled carriers hinder further possible transfer. Furthermore, we found that the biexciton interaction is oppositely affected by quantum confinement and electron delocalization, resulting in a non-monotonic variation of the biexciton binding energy with the emission wavelength. This work provides new observations and insights into the charge carrier transfer dynamics and exciton interactions in colloidal nanoplatelets and will promote their further applications in lasing, display, sensing, etc.

Electronic Supplementary Material

Download File(s)
12274_2023_5542_MOESM1_ESM.pdf (3 MB)

References

[1]

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

[2]

Kormilina, T. K.; Cherevkov, S. A.; Fedorov, A. V.; Baranov, A. V. Cadmium chalcogenide nano-heteroplatelets: Creating advanced nanostructured materials by shell growth, substitution, and attachment. Small 2017, 13, 1702300.

[3]

Yu, J. H.; Chen, R. Optical properties and applications of two-dimensional CdSe nanoplatelets. InfoMat 2020, 2, 905–927.

[4]

Pelton, M.; Ithurria, S.; Schaller, R. D.; Dolzhnikov, D. S.; Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 2012, 12, 6158–6163.

[5]

Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.

[6]

Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

[7]

Scott, R.; Achtstein, A. W.; Prudnikau, A. V.; Antanovich, A.; Siebbeles, L. D. A.; Artemyev, M.; Woggon, U. Time-resolved stark spectroscopy in CdSe nanoplatelets: Exciton binding energy, polarizability, and field-dependent radiative rates. Nano Lett. 2016, 16, 6576–6583.

[8]

Shornikova, E. V.; Yakovlev, D. R.; Gippius, N. A.; Qiang, G.; Dubertret, B.; Khan, A. H.; Di Giacomo, A.; Moreels, I.; Bayer, M. Exciton binding energy in CdSe nanoplatelets measured by one- and two-photon absorption. Nano Lett. 2021, 21, 10525–10531.

[9]

Ayari, S.; Quick, M. T.; Owschimikow, N.; Christodoulou, S.; Bertrand, G. H. V.; Artemyev, M.; Moreels, I.; Woggon, U.; Jaziri, S.; Achtstein, A. W. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale 2020, 12, 14448–14458.

[10]

Scott, R.; Heckmann, J.; Prudnikau, A. V.; Antanovich, A.; Mikhailov, A.; Owschimikow, N.; Artemyev, M.; Climente, J. I.; Woggon, U.; Grosse, N. B. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 2017, 12, 1155–1160.

[11]

Bai, P.; Hu, A.; Liu, Y.; Jin, Y. Z.; Gao, Y. N. Printing and in situ assembly of CdSe/CdS nanoplatelets as uniform films with unity in-plane transition dipole moment. J. Phys. Chem. Lett. 2020, 11, 4524–4529.

[12]

Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.

[13]

Guzelturk, B.; Pelton, M.; Olutas, M.; Demir, H. V. Giant modal gain coefficients in colloidal II-VI nanoplatelets. Nano Lett. 2019, 19, 277–282.

[14]

Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 2014, 9, 891–895.

[15]

Duan, R.; Zhang, Z. T.; Xiao, L.; Zhao, X. X.; Thung, Y. T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V. D.; Sun, H. D. Ultralow-threshold and high-quality whispering-gallery-mode lasing from colloidal core/hybrid-shell quantum wells. Adv. Mater. 2022, 34, 2108884.

[16]

Liu, B. Q.; Altintas, Y.; Wang, L.; Shendre, S.; Sharma, M.; Sun, H. D.; Mutlugun, E.; Demir, H. V. Record high external quantum efficiency of 19.2% achieved in light-emitting diodes of colloidal quantum wells enabled by hot-injection shell growth. Adv. Mater. 2020, 32, 1905824.

[17]

Dutta, A.; Medda, A.; Bera, R.; Sarkar, K.; Sain, S.; Kumar, P.; Patra, A. Hybrid nanostructures of 2D CdSe nanoplatelets for high-performance photodetector using charge transfer process. ACS Appl. Nano Mater. 2020, 3, 4717–4727.

[18]

Van Embden, J.; Jasieniak, J.; Mulvaney, P. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: The effects of core size and shell thickness. J. Am. Chem. Soc. 2009, 131, 14299–14309.

[19]

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

[20]

Xing, G. C.; Liao, Y. L.; Wu, X. Y.; Chakrabortty, S.; Liu, X. F.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 2012, 6, 10835–10844.

[21]

Ning, J. J.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L. Phase-dependent shell growth and optical properties of ZnSe/ZnS core/shell nanorods. Chem. Mater. 2021, 33, 3413–3427.

[22]

Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.

[23]

Portniagin, A. S.; Ning, J. J.; Wang, S. X.; Li, Z.; Sergeev, A. A.; Kershaw, S. V.; Zhong, X. Y.; Rogach, A. L. Monodisperse CuInS2/CdS and CuInZnS2/CdS core–shell nanorods with a strong near-infrared emission. Adv. Opt. Mater. 2022, 10, 2102590.

[24]

Van Der Stam, W.; Grimaldi, G.; Geuchies, J. J.; Gudjonsdottir, S.; Van Uffelen, P. T.; Van Overeem, M.; Brynjarsson, B.; Kirkwood, N.; Houtepen, A. J. Electrochemical modulation of the photophysics of surface-localized trap states in core/shell/(shell) quantum dot films. Chem. Mater. 2019, 31, 8484–8493.

[25]

Liu, X.; Pei, J. J.; Hu, Z. H.; Zhao, W. J.; Liu, S.; Amara, M. R.; Watanabe, K.; Taniguchi, T.; Zhang, H.; Xiong, Q. H. Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. Nano Lett. 2020, 20, 5359–5366.

[26]

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

[27]

Yang, H. H.; Fan, W. G.; Vaneski, A.; Susha, A. S.; Teoh, W. Y.; Rogach, A. L. Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: Intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 2012, 22, 2821–2829.

[28]

Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.

[29]

Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

[30]

Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

[31]

Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

[32]

Scott, R.; Prudnikau, A. V.; Antanovich, A.; Christodoulou, S.; Riedl, T.; Bertrand, G. H. V.; Owschimikow, N.; Lindner, J. K. N.; Hens, Z.; Moreels, I. et al. A comparative study demonstrates strong size tunability of carrier-phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale 2019, 11, 3958–3967.

[33]

Hu, A.; Bai, P.; Zhu, Y. K.; Song, Z. G.; Wang, R. T.; Zheng, J. C.; Yao, Y. G.; Zhang, Q.; Ding, Z. P.; Gao, P. et al. Green CdSe/CdSeS core/alloyed-crown nanoplatelets achieve unity photoluminescence quantum yield over a broad emission range. Adv. Opt. Mater. 2022, 10, 2200469.

[34]

Llusar, J.; Climente, J. I. Shell filling and paramagnetism in few-electron colloidal nanoplatelets. Phys. Rev. Lett. 2022, 129, 066404.

[35]

Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet Type-I heterostructures. ACS Nano 2016, 10, 3843–3851.

[36]

Li, Q. Y.; Lian, T. Q. Area- and thickness-dependent biexciton auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.

[37]

Pelton, M.; Andrews, J. J.; Fedin, I.; Talapin, D. V.; Leng, H. X.; O’Leary, S. K. Nonmonotonic dependence of auger recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets. Nano Lett. 2017, 17, 6900–6906.

[38]

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

[39]

Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.

[40]

Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

[41]

Morgan, D. P.; Kelley, D. F. Exciton localization and radiative lifetimes in CdSe nanoplatelets. J. Phys. Chem. C 2019, 123, 18665–18675.

[42]

Bertrand, G. H. V.; Polovitsyn, A.; Christodoulou, S.; Khan, A. H.; Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 2016, 52, 11975–11978.

[43]

Marcus, R. A. On the theory of electron-transfer reactions. Vi. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679–701.

[44]

Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

[45]

Wang, J. H.; Ding, T.; Gao, K. M.; Wang, L. F.; Zhou, P. W.; Wu, K. F. Marcus inverted region of charge transfer from low-dimensional semiconductor materials. Nat. Commun. 2021, 12, 6333.

[46]

Olshansky, J. H.; Ding, T. X.; Lee, Y. V.; Leone, S. R.; Alivisatos, A. P. Hole transfer from photoexcited quantum dots: The relationship between driving force and rate. J. Am. Chem. Soc. 2015, 137, 15567–15575.

[47]

Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. H.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.

[48]

Pandey, A.; Guyot-Sionnest, P. Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. J. Chem. Phys. 2007, 127, 104710.

[49]

Morgan, D. P.; Maddux, C. J. A.; Kelley, D. F. Transient absorption spectroscopy of CdSe nanoplatelets. J. Phys. Chem. C 2018, 122, 23772–23779.

[50]

Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z. X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 2015, 9, 961–968.

[51]

Mauser, C.; Da Como, E.; Baldauf, J.; Rogach, A. L.; Huang, J.; Talapin, D. V.; Feldmann, J. Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods. Phys. Rev. B 2010, 82, 081306.

[52]

Wang, Y. F.; Wang, H. Y.; Li, Z. S.; Zhao, J.; Wang, L.; Chen, Q. D.; Wang, W. Q.; Sun, H. B. Electron extraction dynamics in CdSe and CdSe/CdS/ZnS quantum dots adsorbed with methyl viologen. J. Phys. Chem. C 2014, 118, 17240–17246.

[53]

Zhang, L.; Yang, H. Y.; Yu, B. Y.; Tang, Y.; Zhang, C. F.; Wang, X. Y.; Xiao, M.; Cui, Y. P.; Zhang, J. Y. Low-threshold amplified spontaneous emission and lasing from thick-shell CdSe/CdS core/shell nanoplatelets enabled by high-temperature growth. Adv. Opt. Mater. 2020, 8, 1901615.

[54]

Kumar, P.; Ray, R.; Adel, P.; Luebkemann, F.; Dorfs, D.; Pal, S. K. Role of ZnS segment on charge carrier dynamics and photoluminescence property of CdSe@CdS/ZnS quantum rods. J. Phys. Chem. C 2018, 122, 6379–6387.

[55]

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

[56]

Xing, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558.

[57]

Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

[58]

Schill, A. W.; Gaddis, C. S.; Qian, W.; El-Sayed, M. A.; Cai, Y.; Milam, V. T.; Sandhage, K. Ultrafast electronic relaxation and charge-carrier localization in CdS/CdSe/CdS quantum-dot quantum-well heterostructures. Nano Lett. 2006, 6, 1940–1949.

[59]

Li, Q. Y.; Liu, Q. L.; Schaller, R. D.; Lian, T. Q. Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect. J. Phys. Chem. Lett. 2019, 10, 1624–1632.

[60]

Birkedal, D.; Singh, J.; Lyssenko, V. G.; Erland, J.; Hvam, J. M. Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 1996, 76, 672–675.

[61]

Woggon, U.; Hild, K.; Gindele, F.; Langbein, W.; Hetterich, M.; Grün, M.; Klingshirn, C. Huge binding energy of localized biexcitons in CdS/ZnS quantum structures. Phys. Rev. B 2000, 61, 12632–12635.

[62]

Chia, C. H.; Makino, T.; Tamura, K.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells. Appl. Phys. Lett. 2003, 82, 1848–1850.

[63]

Macias-Pinilla, D. F.; Planelles, J.; Climente, J. I. Biexcitons in CdSe nanoplatelets: Geometry, binding energy and radiative rate. Nanoscale 2022, 14, 8493–8500.

[64]

Kezerashvili, R. Y.; Machavariani, Z. S.; Beradze, B.; Tchelidze, T. Trions and biexcitons in ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS core/shell nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 109, 228–241.

[65]

Singh, J.; Birkedal, D.; Lyssenko, V. G.; Hvam, J. M. Binding energy of two-dimensional biexcitons. Phys. Rev. B 1996, 53, 15909–15913.

[66]

Mathieu, H.; Lefebvre, P.; Christol, P. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B 1992, 46, 4092–4101.

[67]

Rajadell, F.; Climente, J. I.; Planelles, J. Excitons in core-only, core–shell and core–crown CdSe nanoplatelets: Interplay between in-plane electron-hole correlation, spatial confinement, and dielectric confinement. Phys. Rev. B 2017, 96, 035307.

[68]

Wu, K. F.; Rodríguez-Córdoba, W.; Lian, T. Q. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J. Phys. Chem. B 2014, 118, 14062–14069.

[69]

Lupo, M. G.; Della Sala, F.; Carbone, L.; Zavelani-Rossi, M.; Fiore, A.; Lüer, L.; Polli, D.; Cingolani, R.; Manna, L.; Lanzani, G. Ultrafast electron–hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett. 2008, 8, 4582–4587.

Nano Research
Pages 10420-10428
Cite this article:
Yao Y, Bao X, Zhu Y, et al. Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets. Nano Research, 2023, 16(7): 10420-10428. https://doi.org/10.1007/s12274-023-5542-0
Topics:

1472

Views

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 08 November 2022
Revised: 01 February 2023
Accepted: 03 February 2023
Published: 07 March 2023
© Tsinghua University Press 2023
Return