AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interfacial oxidized Pd species dominate catalytic hydrogenation of polar unsaturated bonds

Pengyao You1Shaoqi Zhan2,3Pengpeng Ruan1Ruixuan Qin1Shiguang Mo1Yazhou Zhang1Kunlong Liu1Lansun Zheng1Nanfeng Zheng1( )
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Department of Chemistry─BMC, Uppsala University, BMC Box 576, Uppsala S-751 23, Sweden
Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
Show Author Information

Graphical Abstract

The metal–support interface plays a crucial role in stabilizing oxidized Pd species for the selective hydrogenation polar unsaturated bonds.

Abstract

The determination of catalytically active sites is crucial for the design of efficient and stable catalysts toward desired reactions. However, the complexity of supported noble metal catalysts has led to controversy over the locations of catalytically active sites (e.g., metal, support, and metal/support interface). Here we develop a structurally controllable catalyst system (Pd/SBA-15) to reveal the catalytic active sites for the selective hydrogenation of ketones to alcohol using acetophenone hydrogenation as model reaction. Systematic investigations demonstrated that unsupported Pd nanocrystals have no catalytic activity for acetophenone hydrogenation. However, oxidized Pd species were catalytically highly active for acetophenone hydrogenation. The catalytic activity decreased with the decreased oxidation state of Pd. This work provides insights into the hydrogenation mechanism of ketones but also other unsaturated compounds containing polar bonds, e.g., nitrobenzene, N-benzylidene-benzylamine, and carbon dioxide.

Electronic Supplementary Material

Download File(s)
12274_2023_5538_MOESM1_ESM.pdf (9 MB)

References

[1]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[2]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[3]

Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

[4]

Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal–support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.

[5]

Pu, T. C.; Chen, J. C.; Tu, W. F.; Xu, J.; Han, Y. F.; Wachs, I. E.; Zhu, M. H. Dependency of CO2 methanation on the strong metal–support interaction for supported Ni/CeO2 catalysts. J. Catal. 2022, 413, 821–828.

[6]

Goodman, E. D.; Asundi, A. S.; Hoffman, A. S.; Bustillo, K. C.; Stebbins, J. F.; Bare, S. R.; Bent, S. F.; Cargnello, M. Monolayer support control and precise colloidal nanocrystals demonstrate metal–support interactions in heterogeneous catalysts. Adv. Mater. 2021, 33, 2104533.

[7]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[8]

Wang, Y.; Qin, R. X.; Wang, Y. K.; Ren, J.; Zhou, W. T.; Li, L. Y.; Ming, J.; Zhang, W. Y.; Fu, G.; Zheng, N. F. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface. Angew. Chem., Int. Ed. 2020, 59, 12736–12740.

[9]

Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

[10]

Quintanilla, A.; Bakker, J. J. W.; Kreutzer, M. T.; Moulijn, J. A.; Kapteijn, F. Tuning the support adsorption properties of Pd/SiO2 by silylation to improve the selective hydrogenation of aromatic ketones. J. Catal. 2008, 257, 55–63.

[11]

Zhang, Z. H.; Jain, P.; Antilla, J. C. Asymmetric reduction of ketones by phosphoric acid derived catalysts. Angew. Chem., Int. Ed. 2011, 50, 10961–10964.

[12]

Sindhuja, D.; Vasanthakumar, P.; Bhuvanesh, N. S. P.; Karvembu, R. An acylthiourea ligated Fe(II) complex on silica nanoparticles for transfer hydrogenation of carbonyl compounds. Ind. Eng. Chem. Res. 2018, 57, 14386–14393.

[13]

Çolak, N. S.; Şahin, E.; Dertli, E.; Yilmaz, M. T.; Taylan, O. Response surface methodology as optimization strategy for asymmetric bioreduction of acetophenone using whole cell of Lactobacillus senmaizukei. Prep. Biochem. Biotechnol. 2019, 49, 884–890.

[14]

Baydaş, Y.; Dertli, E.; Şahin, E. Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst. Synth. Commun. 2020, 50, 1035–1045.

[15]

Liu, X.; Wang, M. D.; Ren, X. M.; Guo, M.; Li, C. Z.; Li, H.; Yang, Q. H. Activation of carbonyl groups via weak interactions in Pt/COF/SiO2 catalyzed selective hydrogenation. ACS Catal. 2022, 12, 6618–6627.

[16]

Gong, W. B.; Lin, Y.; Chen, C.; Al-Mamun, M.; Lu, H. S.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 2019, 31, 1808341.

[17]

Trasarti, A. F.; Bertero, N. M.; Apesteguía, C. R.; Marchi, A. J. Liquid-phase hydrogenation of acetophenone over silica-supported Ni, Co and Cu catalysts: Influence of metal and solvent. Appl. Catal. A: Gen. 2014, 475, 282–291.

[18]

Raj, K. J. A.; Prakash, M. G.; Mahalakshmy, R.; Elangovan, T.; Viswanathan, B. Selective hydrogenation of acetophenone over nickel supported on titania. Catal. Sci. Technol. 2012, 2, 1429–1436.

[19]

Quan, X.; Kerdphon, S.; Peters, B. B. C.; Rujirawanich, J.; Krajangsri, S.; Jongcharoenkamol, J.; Andersson, P. G. Cationic NHC-phosphine iridium complexes: Highly active catalysts for base-free hydrogenation of ketones. Chem.—Eur. J. 2020, 26, 13311–13316.

[20]

Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. Mechanism of asymmetric hydrogenation of ketones catalyzed by binap/1,2-diamine-ruthenium(II) complexes. J. Am. Chem. Soc. 2003, 125, 13490–13503.

[21]

Wang, Z. C.; Kim, K. D.; Zhou, C. F.; Chen, M. M.; Maeda, N.; Liu, Z. W.; Shi, J.; Baiker, A.; Hunger, M.; Huang, J. Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone. Catal. Sci. Technol. 2015, 5, 2788–2797.

[22]

Yadav, G. D.; Mewada, R. K. Selective hydrogenation of acetophenone to 1-phenyl ethanol over nanofibrous Ag-OMS-2 catalysts. Catal. Today 2012, 198, 330–337.

[23]

Chen, Q.; Kang, H. Z.; Liu, X.; Jiang, K.; Bi, Y. F.; Zhou, Y. M.; Wang, M. Y.; Zhang, M.; Liu, L.; Xing, E. H. Selective hydrogenation of aromatic ketone over Pt@Y zeolite through restricted adsorption conformation of reactants by zeolitic micropores. ChemCatChem 2020, 12, 1948–1952.

[24]

Casagrande, M.; Storaro, L.; Talon, A.; Lenarda, M.; Frattini, R.; Rodrı́guez-Castellón, E.; Maireles-Torres, P. Liquid phase acetophenone hydrogenation on Ru/Cr/B catalysts supported on silica. J. Mol. Catal. A: Chem. 2002, 188, 133–139.

[25]

Paul, R.; Shit, S. C.; Fovanna, T.; Ferri, D.; Srinivasa Rao, B.; Gunasooriya, G. T. K. K.; Dao, D. Q.; Le, Q. V.; Shown, I.; Sherburne, M. P. et al. Realizing catalytic acetophenone hydrodeoxygenation with palladium-equipped porous organic polymers. ACS Appl. Mater. Interfaces 2020, 12, 50550–50565.

[26]

Gou, Y.; Liang, X.; Chen, B. H. Catalytic hydrogenation of acetophenone over shape controlled Pd catalysts supported on sheet-like NiO. Catal. Today 2013, 216, 200–204.

[27]

Kim, K. D.; Wang, Z. C.; Tao, Y. W.; Ling, H. J.; Yuan, Y.; Zhou, C. F.; Liu, Z. W.; Gaborieau, M.; Huang, J.; Yu, A. B. The comparative effect of particle size and support acidity on hydrogenation of aromatic ketones. ChemCatChem 2019, 11, 4810–4817.

[28]

Hiyoshi, N.; Sato, O.; Yamaguchi, A.; Shirai, M. Acetophenone hydrogenation over a Pd catalyst in the presence of H2O and CO2. Chem. Commun. 2011, 47, 11546–11548.

[29]

Alsalahi, W.; Tylus, W.; Trzeciak, A. M. Highly selective hydrogenation of aromatic ketones to alcohols in water: Effect of PdO and ZrO2. Dalton Trans. 2021, 50, 10386–10393.

[30]

Chen, C. S.; Chen, H. W. Effect of adsorption geometry on the selectivity of carbonyl group hydrogenation on Pd/SiO2. J. Chem. Soc. Faraday Trans. 1996, 92, 1595–1601.

[31]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[32]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[33]

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

[34]

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

[35]

Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808–4812.

[36]

Guerrero-Ruiz, A.; Yang, S. W.; Xin, Q.; Maroto-Valiente, A.; Benito-Gonzalez, M.; Rodriguez-Ramos, I. Comparative study by infrared spectroscopy and microcalorimetry of the CO adsorption over supported palladium catalysts. Langmuir 2000, 16, 8100–8106.

[37]

Szanyi, J.; Kuhn, W. K.; Goodman, D. W. CO adsorption on Pd (111) and Pd (100): Low and high pressure correlations. J. Vacuum Sci. Technol. A 1993, 11, 1969–1974.

[38]

Tessier, D.; Rakai, A.; Bozon-Verduraz, F. Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium-alumina catalysts. J. Chem. Soc. Faraday Trans. 1992, 88, 741–749.

[39]

Schalow, T.; Laurin, M.; Brandt, B.; Schauermann, S.; Guimond, S.; Kuhlenbeck, H.; Starr, D. E.; Shaikhutdinov, S. K.; Libuda, J.; Freund, H. J. Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 7601–7605.

[40]

Schalow, T.; Brandt, B.; Starr, D. E.; Laurin, M.; Shaikhutdinov, S. K.; Schauermann, S.; Libuda, J.; Freund, H. J. Size-dependent oxidation mechanism of supported Pd nanoparticles. Angew. Chem., Int. Ed. 2006, 45, 3693–3697.

[41]

Dong, Z. H.; Yuan, J. W.; Xiao, Y. M.; Mao, P.; Wang, W. T. Room temperature chemoselective deoxygenation of aromatic ketones and aldehydes promoted by a tandem Pd/TiO2 + FeCl3 catalyst. J. Org. Chem. 2018, 83, 11067–11073.

[42]

Schimmoeller, B.; Hoxha, F.; Mallat, T.; Krumeich, F.; Pratsinis, S. E.; Baiker, A. Fine tuning the surface acid/base properties of single step flame-made Pt/alumina. Appl. Catal. A: Gen. 2010, 374, 48–57.

Nano Research
Pages 228-234
Cite this article:
You P, Zhan S, Ruan P, et al. Interfacial oxidized Pd species dominate catalytic hydrogenation of polar unsaturated bonds. Nano Research, 2024, 17(1): 228-234. https://doi.org/10.1007/s12274-023-5538-9
Topics:

836

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 23 November 2022
Revised: 26 January 2023
Accepted: 30 January 2023
Published: 15 March 2023
© Tsinghua University Press 2023
Return