Journal Home > Volume 16 , Issue 7

The finite lithium-ion utilization, short cycling life, and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’ (LMBs’) commercialization. Herein, a perfluoroalkyl-functionalized covalent organic framework (COF-F6) equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode. Benefiting from the strong electron-withdrawing effect of perfluoroalkyl, Li+ will be freed more by the competition of electronegative fluorine (F) and bis(trifluoromethanesulphonyl)imide anion (TFSI). The dissociation of LiTFSI and process of Li+ desolvation are easier to achieve. In addition, high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li+. All the above roles contribute to improving the Li+ transfer number (0.7) and achieving the goal of inhibiting Li dendrite. As a result, the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability. The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage (11 mV) at 5 mA·cm−2. Also, no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition. Therefore, this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes

Show Author's information Yongxin YangConghui ZhangZhiyuan MeiYongjiang SunQi AnQi JingGenfu ZhaoHong Guo( )
International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China

Abstract

The finite lithium-ion utilization, short cycling life, and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’ (LMBs’) commercialization. Herein, a perfluoroalkyl-functionalized covalent organic framework (COF-F6) equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode. Benefiting from the strong electron-withdrawing effect of perfluoroalkyl, Li+ will be freed more by the competition of electronegative fluorine (F) and bis(trifluoromethanesulphonyl)imide anion (TFSI). The dissociation of LiTFSI and process of Li+ desolvation are easier to achieve. In addition, high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li+. All the above roles contribute to improving the Li+ transfer number (0.7) and achieving the goal of inhibiting Li dendrite. As a result, the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability. The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage (11 mV) at 5 mA·cm−2. Also, no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition. Therefore, this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.

Keywords: lithium metal anode, dendrite-free, artificial solid electrolyte interface, strong electron-withdrawing effect, perfluoroalkyl-functionalized covalent organic framework (COF-F6)

References(50)

[1]

Ma, M. Y.; Shao, F.; Wen, P.; Chen, K. X.; Li, J. R.; Zhou, Y.; Liu, Y. L.; Jia, M. Y.; Chen, M.; Lin, X. R. Designing weakly solvating solid main-chain fluoropolymer electrolytes: Synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 2021, 6, 4255–4264.

[2]

Jia, M. Y.; Wen, P.; Wang, Z. T.; Zhao, Y. C.; Liu, Y. M.; Lin, J.; Chen, M.; Lin, X. R. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv. Funct. Mater. 2021, 31, 2101736.

[3]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 μm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[4]

Xia, S. B.; Cai, Y. Q.; Yao, L. F.; Shi, J. Y.; Cheng, F. X.; Liu, J. J.; He, Z. J.; Zheng, J. C. Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy Storage Mater. 2022, 50, 225–233.

[5]

Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

[6]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[7]

Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.

[8]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[9]

Hou, Z.; Zhang, J. L.; Wang, W. H.; Chen, Q. W.; Li, B. H.; Li, C. L. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem. 2020, 45, 7–17.

[10]

Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

[11]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[12]

Tang, L. B.; Yang, P.; Chen, Y. J.; Li, P. Y.; Peng, T.; Wei, H. X.; Wang, Z. Y.; He, Z. J.; Yan, C.; Mao, J. et al. Cation doping constructed vacancy engineering for designing Sn3Se5@PPy heterostructures toward lithium/sodium-ion batteries. J. Power Sources 2022, 552, 232210.

[13]

Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

[14]

Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.

[15]

Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

[16]

Dong, L. W.; Liu, Y. P.; Wen, K. C.; Chen, D. J.; Rao, D. W.; Liu, J. P.; Yuan, B. T.; Dong, Y. F.; Wu, Z.; Liang, Y. F. et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv. Sci. (Weinh.) 2022, 9, 2104699.

[17]

Wen, Y. C.; Ding, J. Y.; Yang, Y.; Lan, X. X.; Liu, J.; Hu, R. Z.; Zhu, M. Introducing NO3 into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2109377.

[18]

Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.

[19]

Zhou, P.; Xia, Y. C.; Hou, W. H.; Yan, S. S.; Zhou, H. Y.; Zhang, W. L.; Lu, Y.; Wang, P. C.; Liu, K. Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry. Nano Lett. 2022, 22, 5936–5943.

[20]

Zhao, Q. N.; Wang, R. H.; Hu, X. L.; Wang, Y. M.; Lu, G. J.; Yang, Z. G.; Liu, Q. W.; Yang, X. K.; Pan, F. S.; Xu, C. H. Functionalized 12 μm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv. Sci. (Weinh. ) 2022, 9, 2102215.

[21]

Li, Z. H.; Ji, W. Y.; Wang, T. X.; Zhang, Y. R.; Li, Z.; Ding, X. S.; Han, B. H.; Feng, W. Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 22586–22596.

[22]

Zhao, J. C.; Yan, G. J.; Zhang, X. J.; Feng, Y.; Li, N. W.; Shi, J. J.; Qu, X. W. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem. Eng. J. 2022, 442, 136352.

[23]

Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.

[24]

Li, Z. H.; Ji, W. Y.; Wang, T. X.; Ding, X. S.; Han, B. H.; Feng, W. Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries. Chem. Eng. J. 2022, 437, 135293.

[25]

Yan, J.; Liu, F. Q.; Hu, Z. Y.; Gao, J.; Zhou, W. D.; Huo, H.; Zhou, J. J.; Li, L. Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 2020, 20, 3798–3807.

[26]
An, Q.; Wang, H. E.; Zhao, G. F.; Wang, S. M.; Xu, L. F.; Wang, H.; Fu, Y.; Guo, H. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12345.
[27]

Chen, D. D.; Liu, P.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Huang, S.; Meng, Y. Z. Covalent organic frameworks with low surface work function enabled stable lithium anode. Small. 2021, 17, 2101496.

[28]

Li, X. R.; Tian, Y.; Shen, L.; Qu, Z. B.; Ma, T. Q.; Sun, F.; Liu, X. Y.; Zhang, C.; Shen, J. Q.; Li, X. Y. et al. Electrolyte interphase built from anionic covalent organic frameworks for lithium dendrite suppression. Adv. Funct. Mater. 2021, 31, 2009718.

[29]

Wang, W. B.; Yang, Z. H.; Zhang, Y. T.; Wang, A. P.; Zhang, Y. R.; Chen, L. L.; Li, Q.; Qiao, S. L. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 2022, 46, 374–383.

[30]

Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

[31]

Xu, Y.; Zhou, Y.; Li, T.; Jiang, S. H.; Qian, X.; Yue, Q.; Kang, Y. J. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 25, 334–341.

[32]

Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

[33]

Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.

[34]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[35]

Zhao, G. F.; Li, H. N.; Gao, Z. H.; Xu, L. F.; Mei, Z. Y.; Cai, S.; Liu, T. T.; Yang, X. F.; Guo, H.; Sun, X. L. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv. Funct. Mater. 2021, 31, 2101019.

[36]

Gui, B.; Lin, G. Q.; Ding, H. M.; Gao, C.; Mal, A.; Wang, C. Three-dimensional covalent organic frameworks: From topology design to applications. Acc. Chem. Res. 2020, 53, 2225–2234.

[37]

Zhang, Y. R.; Wang, W. B.; Hou, M. L.; Zhang, Y. T.; Dou, Y. Y.; Yang, Z. H.; Xu, X. Y.; Liu, H. N.; Qiao, S. L. Self-exfoliated covalent organic framework nano-mesh enabled regular charge distribution for highly stable lithium metal battery. Energy Storage Mater. 2022, 47, 376–385.

[38]

He, J. R.; Bhargav, A.; Manthiram, A. Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem., Int. Ed. 2022, 61, 202116586.

[39]

Wu, X. W.; Hong, Y. L.; Xu, B. Q.; Nishiyama, Y.; Jiang, W.; Zhu, J. W.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364.

[40]

Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

[41]

Li, J.; Zhang, H. T.; Cui, Y. Y.; Da, H. R.; Cai, Y. J.; Zhang, S. J. Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for hour-rate solid-state batteries. Nano Energy. 2022, 102, 107716.

[42]

Ma, T.; Ni, Y. X.; Wang, Y. Q.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.

[43]

Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

[44]
Zhao, G. F.; Mei, Z. Y.; Duan, L. Y.; An, Q.; Yang, Y. X.; Zhang, C. H.; Tan, X. P.; Guo, H. COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy, in press, https://doi.org/10.1002/cey2.248.
[45]

Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.

[46]

Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.

[47]

Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 2015, 48, 2947–2956.

[48]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[49]

Ren, X. D.; Gao, P. Y.; Zou, L. F.; Jiao, S. H.; Cao, X.; Zhang, X. H.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H. P. et al. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. USA 2020, 117, 28603–28613.

[50]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

File
12274_2023_5534_MOESM1_ESM.pdf (3.5 MB)
12274_2023_5534_MOESM2_ESM.pdf (480.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2022
Revised: 14 January 2023
Accepted: 30 January 2023
Published: 19 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge financial supports provided by the National Natural Science Foundation of China (No. 52064049), Key Laboratory of Solid-State Ions for Green Energy of Yunnan University (2019), Analysis and Measurements Center of Yunnan University for the sample testing service, the Electron Microscope Center of Yunnan University for the support of this work, and the Postgraduate Research and Innovation Foundation of Yunnan University (No. KC-22221440). The authors would like to thank Jiao Kang and Shu-di Ren from Shiyanjia Lab (www.shiyanjia.com) for the NMR analysis.

Return