Journal Home > Volume 16 , Issue 7

The synthesis and potential applications of nanocarbon materials have attracted much attention in recent years. Herein, we report the design and synthesis of a novel all-carbon conjugated polymeric segment of single-walled carbon nanotubes (poly(cyclo-para-phenylene) (PCPP)) and its first application as an anode material for lithium-ion batteries. The as-synthesized PCPP was characterized by Raman spectroscopy, Fourier transform infrared (FTIR), and other spectroscopies. The electrochemical characterization results show the suitability of PCPP as an anode material for lithium-ion batteries. Theoretical calculations indicate the unique structural and physical properties of PCPP. The realization of PCPP expands the scope of bottom-up synthesis of uniform carbon nanotube segments and their potential applications as new materials for lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of an all-carbon conjugated polymeric segment of carbon nanotubes and its application for lithium-ion batteries

Show Author's information Shengda Wang1,§Fei Chen1,§Guilin Zhuang2Kang Wei1Tianyun Chen1Xinyu Zhang1Chunhua Chen1( )Pingwu Du1( )
Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, China
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China

§ Shengda Wang and Fei Chen contributed equally to this work.

Abstract

The synthesis and potential applications of nanocarbon materials have attracted much attention in recent years. Herein, we report the design and synthesis of a novel all-carbon conjugated polymeric segment of single-walled carbon nanotubes (poly(cyclo-para-phenylene) (PCPP)) and its first application as an anode material for lithium-ion batteries. The as-synthesized PCPP was characterized by Raman spectroscopy, Fourier transform infrared (FTIR), and other spectroscopies. The electrochemical characterization results show the suitability of PCPP as an anode material for lithium-ion batteries. Theoretical calculations indicate the unique structural and physical properties of PCPP. The realization of PCPP expands the scope of bottom-up synthesis of uniform carbon nanotube segments and their potential applications as new materials for lithium-ion batteries.

Keywords: carbon nanotubes, lithium-ion batteries, carbon nanomaterials, conjugated polymer

References(62)

[1]
Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
DOI
[2]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[3]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[4]

Chen, H.; Miao, Q. Recent advances and attempts in synthesis of conjugated nanobelts. J. Phys. Org. Chem. 2020, 33, e4145.

[5]

Guo, Q. H.; Qiu, Y. Y.; Wang, M. X.; Stoddart, J. F. Aromatic hydrocarbon belts. Nat. Chem. 2021, 13, 402–419.

[6]

Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 2221–2304.

[7]

Majewski, M. A.; Stępień, M. Bowls, hoops, and saddles: Synthetic approaches to curved aromatic molecules. Angew. Chem., Int. Ed. 2019, 58, 86–116.

[8]

Wang, J. Y.; Zhang, X. Y.; Jia, H. X.; Wang, S. D.; Du, P. W. Large π-extended and curved carbon nanorings as carbon nanotube segments. Acc. Chem. Res. 2021, 54, 4178–4190.

[9]

Xu, Y. Z.; Von Delius, M. The supramolecular chemistry of strained carbon nanohoops. Angew. Chem., Int. Ed. 2020, 59, 559–573.

[10]

Zhang, Y. Q.; Pun, S. H.; Miao, Q. The scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics. Chem. Rev. 2022, 122, 14554–14593.

[11]

Chen, L.; Hernandez, Y.; Feng, X. L.; Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem., Int. Ed. 2012, 51, 7640–7654.

[12]

Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.

[13]

Morin, J. F.; Leclerc, M. Syntheses of conjugated polymers derived from N-alkyl-2,7-carbazoles. Macromolecules 2001, 34, 4680–4682.

[14]

Braun, D.; Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 1991, 58, 1982–1984.

[15]

Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Electroluminescent conjugated polymers—Seeing polymers in a new light. Angew. Chem., Int. Ed. 1998, 37, 402–428.

[16]

Pei, Q. B.; Yang, Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 1996, 118, 7416–7417.

[17]

Ranger, M.; Rondeau, D.; Leclerc, M. New well-defined poly(2,7-fluorene) derivatives: Photoluminescence and base doping. Macromolecules 1997, 30, 7686–7691.

[18]

Grem, G.; Paar, C.; Stampfl, J.; Leising, G.; Huber, J.; Scherf, U. Soluble segmented stepladder poly(p-phenylenes) for blue-light-emitting diodes. Chem. Mater. 1995, 7, 2–4.

[19]

Yang, Y.; Pei, Q.; Heeger, A. J. Efficient blue light-emitting diodes from a soluble poly(para-phenylene) internal field emission measurement of the energy gap in semiconducting polymers. Synth. Met. 1996, 78, 263–267.

[20]

Strunk, K. P.; Abdulkarim, A.; Beck, S.; Marszalek, T.; Bernhardt, J.; Koser, S.; Pisula, W.; Jänsch, D.; Freudenberg, J.; Pucci, A. et al. Pristine poly(para-phenylene): Relating semiconducting behavior to kinetics of precursor conversion. ACS Appl. Mater. Interfaces 2019, 11, 19481–19488.

[21]

Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

[22]

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

[23]

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

[24]

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

[25]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[26]

Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, eaab2750.

[27]

He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 2018, 17, 663–670.

[28]

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

[29]

Jeon, I.; Matsuo, Y.; Maruyama, S. Single-walled carbon nanotubes in solar cells. Top. Curr. Chem. 2018, 376, 4.

[30]

Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.

[31]

Yu, L. P.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016, 116, 13413–13453.

[32]

Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

[33]

Omachi, H.; Nakayama, T.; Takahashi, E.; Segawa, Y.; Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 2013, 5, 572–576.

[34]

Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.

[35]

Fort, E. H.; Donovan, P. M.; Scott, L. T. Diels-alder reactivity of polycyclic aromatic hydrocarbon bay regions: Implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 16006–16007.

[36]

Fort, E. H.; Scott, L. T. Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels–Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 2011, 21, 1373–1381.

[37]

Golling, F. E.; Quernheim, M.; Wagner, M.; Nishiuchi, T.; Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem., Int. Ed. 2014, 53, 1525–1528.

[38]

Han, Y.; Dong, S. Q.; Shao, J. W.; Fan, W.; Chi, C. Y. Synthesis of a sidewall fragment of a (12, 0) carbon nanotube. Angew. Chem., Int. Ed. 2021, 60, 2658–2662.

[39]

Huang, Q.; Zhuang, G. L.; Jia, H. X.; Qian, M. M.; Cui, S. S.; Yang, S. F.; Du, P. W. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem., Int. Ed. 2019, 58, 6244–6249.

[40]

Wang, S. H.; Yuan, J.; Xie, J. L.; Lu, Z. H.; Jiang, L.; Mu, Y. X.; Huo, Y. P.; Tsuchido, Y.; Zhu, K. L. Sulphur-embedded hydrocarbon belts: Synthesis, structure and redox chemistry of cyclothianthrenes. Angew. Chem., Int. Ed. 2021, 60, 18443–18447.

[41]

Xia, Z. M.; Pun, S. H.; Chen, H.; Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem., Int. Ed. 2021, 60, 10311–10318.

[42]

Xu, Y. Z.; Wang, B. Z.; Kaur, R.; Minameyer, M. B.; Bothe, M.; Drewello, T.; Guldi, D. M.; Von Delius, M. A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin-[10]CPP⊃fullerene complexes. Angew. Chem., Int. Ed. 2018, 57, 11549–11553.

[43]

Cheung, K. Y.; Gui, S. J.; Deng, C. F.; Liang, H. F.; Xia, Z. M.; Liu, Z. F.; Chi, L. F.; Miao, Q. Synthesis of armchair and chiral carbon nanobelts. Chem 2019, 5, 838–847.

[44]

Guo, L. F.; Yang, X. D.; Cong, H. Synthesis of macrocyclic oligoparaphenylenes derived from anthracene photodimer. Chin. J. Chem. 2018, 36, 1135–1138.

[45]

Bergman, H. M.; Kiel, G. R.; Handford, R. C.; Liu, Y.; Tilley, T. D. Scalable, divergent synthesis of a high aspect ratio carbon nanobelt. J. Am. Chem. Soc. 2021, 143, 8619–8624.

[46]

Huang, Z. A.; Chen, C.; Yang, X. D.; Fan, X. B.; Zhou, W.; Tung, C. H.; Wu, L. Z.; Cong, H. Synthesis of oligoparaphenylene-derived nanohoops employing an anthracene photodimerization-cycloreversion strategy. J. Am. Chem. Soc. 2016, 138, 11144–11147.

[47]

Scott, L. T.; Jackson, E. A.; Zhang, Q. Y.; Steinberg, B. D.; Bancu, M.; Li, B. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 2012, 134, 107–110.

[48]

Zong, C. Y.; Zhu, X. T.; Xu, Z. Q.; Zhang, L. F.; Xu, J.; Guo, J.; Xiang, Q.; Zeng, Z. B.; Hu, W. P.; Wu, J. S. et al. Isomeric dibenzoheptazethrenes for air-stable organic field-effect transistors. Angew. Chem., Int. Ed. 2021, 60, 16230–16236.

[49]

Bodwell, G. J. Carbon nanotubes: Growth potential. Nat. Nanotechnol. 2010, 5, 103–104.

[50]

Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172–175.

[51]

Zhang, Y. Q.; Zhu, Y. K.; Lan, D. N.; Pun, S. H.; Zhou, Z.; Wei, Z.; Wang, Y.; Lee, H. K.; Lin, C.; Wang, J. P. et al. Charging a negatively curved nanographene and its covalent network. J. Am. Chem. Soc. 2021, 143, 5231–5238.

[52]

Maust, R. L.; Li, P. H.; Shao, B. H.; Zeitler, S. M.; Sun, P. B.; Reid, H. W.; Zakharov, L. N.; Golder, M. R.; Jasti, R. Controlled polymerization of norbornene cycloparaphenylenes expands carbon nanomaterials design space. ACS Cent. Sci. 2021, 7, 1056–1065.

[53]

Peters, G. M.; Grover, G.; Maust, R. L.; Colwell, C. E.; Bates, H.; Edgell, W. A.; Jasti, R.; Kertesz, M.; Tovar, J. D. Linear and radial conjugation in extended π-electron systems. J. Am. Chem. Soc. 2020, 142, 2293–2300.

[54]

Huang, Q.; Zhuang, G. L.; Zhang, M. M.; Wang, J. Y.; Wang, S. D.; Wu, Y. Y.; Yang, S. F.; Du, P. W. A long π-conjugated poly(para-phenylene)-based polymeric segment of single-walled carbon nanotubes. J. Am. Chem. Soc. 2019, 141, 18938–18943.

[55]

Wang, S. D.; Li, X. C.; Zhang, X. Y.; Huang, P. S.; Fang, P. W.; Wang, J. H.; Yang, S. F.; Wu, K. F.; Du, P. W. A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes. Chem. Sci. 2021, 12, 10506–10513.

[56]

Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc. 2008, 130, 17646–17647.

[57]

Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem., Int. Ed. 2009, 48, 6112–6116.

[58]

Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem., Int. Ed. 2010, 49, 757–759.

[59]

Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]-[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 6401–6410.

[60]

Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T. et al. A 3D organically synthesized porous carbon material for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 11952–11956.

[61]

Abdulkarim, A.; Hinkel, F.; Jänsch, D.; Freudenberg, J.; Golling, F. E.; Müllen, K. A new solution to an old problem: Synthesis of unsubstituted poly(para-phenylene). J. Am. Chem. Soc. 2016, 138, 16208–16211.

[62]

Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.

Video
12274_2023_5530_MOESM2_ESM.avi
File
12274_2023_5530_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2022
Revised: 12 January 2023
Accepted: 25 January 2023
Published: 23 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was made possible as a result of a generous grant from the National Natural Science Foundation of China (Nos. 22225108, 21971229, and 51772285) and the National Key Research and Development Program of China (Nos. 2017YFA0402800 and 2018YFB0905400).

Return