Journal Home > Volume 16 , Issue 7

Twist provides a new degree of freedom for nanomaterial modifications, which can provide novel physical properties. Here, colloidal two-dimensional (2D) twisted CdSe nanoplatelets (NPLs) are successfully fabricated and their morphology can change from totally flat to edge-twisted, and then to middle-twisted with prolonged reaction time. By combining experiments and corresponding theoretical analyses, we have established the length-dependent relationships between the surface energy and twist, with a critical lateral dimension of 30 nm. We found that the defects formed during the synthesis process play a vital role in generating intense stress that develops a strong torsion tensor around the edges, resulting in edge-twisted and final middle-twisted NPLs. Furthermore, due to the geometric asymmetry of twisted NPLs, the dissymmetry factor of single particle NPLs can reach up to 0.334. Specifically, quantum coupling occurs in middle-twisted NPLs by twisting one parent NPL into two daughter NPLs, which are structurally and electronically coupled. This work not only further deepens our understanding of the twist mechanism of 2D NPLs during colloidal synthesis, but also opens a pathway for applications using twistronics and quantum technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling

Show Author's information Zahid Nazir1Yingzhuo Lun3Jialu Li4Gaoling Yang2( )Mingrui Liu1Shuqi Li3Gang Tang5Guofeng Zhang4( )Jiawang Hong3( )Liantuan Xiao4Haizheng Zhong1
MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

Abstract

Twist provides a new degree of freedom for nanomaterial modifications, which can provide novel physical properties. Here, colloidal two-dimensional (2D) twisted CdSe nanoplatelets (NPLs) are successfully fabricated and their morphology can change from totally flat to edge-twisted, and then to middle-twisted with prolonged reaction time. By combining experiments and corresponding theoretical analyses, we have established the length-dependent relationships between the surface energy and twist, with a critical lateral dimension of 30 nm. We found that the defects formed during the synthesis process play a vital role in generating intense stress that develops a strong torsion tensor around the edges, resulting in edge-twisted and final middle-twisted NPLs. Furthermore, due to the geometric asymmetry of twisted NPLs, the dissymmetry factor of single particle NPLs can reach up to 0.334. Specifically, quantum coupling occurs in middle-twisted NPLs by twisting one parent NPL into two daughter NPLs, which are structurally and electronically coupled. This work not only further deepens our understanding of the twist mechanism of 2D NPLs during colloidal synthesis, but also opens a pathway for applications using twistronics and quantum technology.

Keywords: circular dichroism, twist, CdSe, nanoplatelets, quantum coupling

References(57)

[1]

Gao, P. X.; Ding, Y.; Mai, W. J.; Hughes, W. L.; Lao, C. S.; Wang, Z. L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.

[2]

Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477–481.

[3]

Srivastava, S.; Santos, A.; Critchley, K.; Kim, K. S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C. L.; Lilly, G. D.; Glotzer, S. C. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 2010, 327, 1355–1359.

[4]

Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 2020, 583, 215–220.

[5]

Turkel, S.; Swann, J.; Zhu, Z. Y.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M. S.; Kaxiras, E.; Dean, C. R. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199.

[6]

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

[7]

Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

[8]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[9]

Seyler, K. L. ; Rivera, P. ; Yu, H. Y. ; Wilson, N. P. ; Ray, E. L. ; Mandrus, D. G. ; Yan, J. Q. ; Yao, W. ; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[10]

Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808–813.

[11]

Hsu, W. T.; Zhao, Z. A.; Li, L. J.; Chen, C. H.; Chiu, M. H.; Chang, P. S.; Chou, Y. C.; Chang, W. H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951–2958.

[12]

Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

[13]

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

[14]

Pun, A. B.; Mazzotti, S.; Mule, A. S.; Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021, 54, 1545–1554.

[15]

Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

[16]

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

[17]

Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

[18]

Lhuillier, E.; Pedetti, S.; Ithurria, S.; Nadal, B.; Heuclin, H.; Dubertret, B. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Acc. Chem. Res. 2015, 48, 22–30.

[19]

Zhang, F. J.; Wang, S. J.; Wang, L.; Lin, Q. L.; Shen, H. B.; Cao, W. R.; Yang, C. C.; Wang, H. Z.; Yu, L.; Du, Z. L. et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale 2016, 8, 12182–12188.

[20]

Wen, Z. L.; Liu, P.; Ma, J. R.; Jia, S. Q.; Xiao, X. T.; Ding, S. H.; Tang, H. D.; Yang, H. C.; Zhang, C. J.; Qu, X. W. et al. High-performance ultrapure green CdSe/CdS core/crown nanoplatelet light-emitting diodes by suppressing nonradiative energy transfer. Adv. Electron. Mater. 2021, 7, 2000965.

[21]

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

[22]

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

[23]

Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

[24]

Bouet, C.; Mahler, B.; Nadal, B.; Abecassis, B.; Tessier, M. D.; Ithurria, S.; Xu, X. Z.; Dubertret, B. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 2013, 25, 639–645.

[25]

Hutter, E. M.; Bladt, E.; Goris, B.; Pietra, F.; van der Bok, J. C.; Boneschanscher, M. P.; de Mello Donegá, C.; Bals, S.; Vanmaekelbergh, D. Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape. Nano Lett. 2014, 14, 6257–6262.

[26]

Jana, S.; de Frutos, M.; Davidson, P.; Abécassis, B. Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons. Sci. Adv. 2017, 3, e1701483.

[27]

Vasiliev, R. B.; Lazareva, E. P.; Karlova, D. A.; Garshev, A. V.; Yao, Y. Z.; Kuroda, T.; Gaskov, A. M.; Sakoda, K. Spontaneous folding of CdTe nanosheets induced by ligand exchange. Chem. Mater. 2018, 30, 1710–1717.

[28]

Kim, W. D.; Yoon, D. E.; Kim, D.; Koh, S.; Bae, W. K.; Chae, W. S.; Lee, D. C. Stacking of colloidal CdSe nanoplatelets into twisted ribbon superstructures: Origin of twisting and its implication in optical properties. J. Phys. Chem. C 2019, 123, 9445–9453.

[29]

Liu, Y. Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S. L.; Fan, H. S.; Huang, W.; Chen, X. Q.; Yu, K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.

[30]

Guillemeney, L.; Lermusiaux, L.; Landaburu, G.; Wagnon, B.; Abécassis, B. Curvature and self-assembly of semi-conducting nanoplatelets. Commun. Chem. 2022, 5, 7.

[31]

Castro, N.; Bouet, C.; Ithurria, S.; Lequeux, N.; Constantin, D.; Levitz, P.; Pontoni, D.; Abécassis, B. Insights into the formation mechanism of CdSe nanoplatelets using in situ X-ray scattering. Nano Lett. 2019, 19, 6466–6474.

[32]

Po, H.; Dabard, C.; Roman, B.; Reyssat, E.; Bico, J.; Baptiste, B.; Lhuillier, E.; Ithurria, S. Chiral helices formation by self-assembled molecules on semiconductor flexible substrates. ACS Nano 2022, 16, 2901–2909.

[33]

Di Giacomo, A.; Rodà, C.; Khan, A. H.; Moreels, I. Colloidal synthesis of laterally confined blue-emitting 3. 5 monolayer CdSe nanoplatelets. Chem. Mater. 2020, 32, 9260–9267.

[34]

Singh, S.; Tomar, R.; Ten Brinck, S.; De Roo, J.; Geiregat, P.; Martins, J. C.; Infante, I.; Hens, Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018, 140, 13292–13300.

[35]

Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

[36]

Wang, P. P.; Yu, S. J.; Govorov, A. O.; Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 2017, 8, 14312.

[37]

Vinegrad, E.; Vestler, D.; Ben-Moshe, A.; Barnea, A. R.; Markovich, G.; Cheshnovsky, O. Circular dichroism of single particles. ACS Photonics 2018, 5, 2151–2159.

[38]

Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.

[39]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[40]

Yang, G. L.; Kazes, M.; Oron, D. Chiral 2D colloidal semiconductor quantum wells. Adv. Funct. Mater. 2018, 28, 1802012.

[41]

Cui, J. B.; Panfil, Y. E.; Koley, S.; Shamalia, D.; Waiskopf, N.; Remennik, S.; Popov, I.; Oded, M.; Banin, U. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 2019, 10, 5401.

[42]

Kuo, Y. H.; Lee, Y. K.; Ge, Y. S.; Ren, S.; Roth, J. E.; Kamins, T. I.; Miller, D. A. B.; Harris, J. S. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 2005, 437, 1334–1336.

[43]

Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

[44]

Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

[45]

Amgar, D.; Yang, G. L.; Tenne, R.; Oron, D. Higher-order photon correlation as a tool to study exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 2019, 19, 8741–8748.

[46]

Teitelboim, A.; Meir, N.; Kazes, M.; Oron, D. Colloidal double quantum dots. Acc. Chem. Res. 2016, 49, 902–910.

[47]

Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 10, 1805–1811.

[48]

Park, Y. S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 2014, 8, 7288–7296.

[49]

Shornikova, E. V.; Yakovlev, D. R.; Biadala, L.; Crooker, S. A.; Belykh, V. V.; Kochiev, M. V.; Kuntzmann, A.; Nasilowski, M.; Dubertret, B.; Bayer, M. Negatively charged excitons in CdSe nanoplatelets. Nano Lett. 2020, 20, 1370–1377.

[50]

Ayari, S.; Quick, M. T.; Owschimikow, N.; Christodoulou, S.; Bertrand, G. H. V.; Artemyev, M.; Moreels, I.; Woggon, U.; Jaziri, S.; Achtstein, A. W. Tuning Trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for Trion properties. Nanoscale 2020, 12, 14448–14458.

[51]

Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Res. 2022, 15, 7655–7661.

[52]

Peng, L. T.; Otten, M.; Hazarika, A.; Coropceanu, I.; Cygorek, M.; Wiederrecht, G. P.; Hawrylak, P.; Talapin, D. V.; Ma, X. D. Bright Trion emission from semiconductor nanoplatelets. Phys. Rev. Mater. 2020, 4, 056006.

[53]

Cragg, G. E.; Efros, A. L. Suppression of auger processes in confined structures. Nano Lett. 2010, 10, 313–317.

[54]

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

[55]

Jia, G. H.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 2014, 13, 301–307.

[56]

Guzelturk, B.; Erdem, O.; Olutas, M.; Kelestemur, Y.; Demir, H. V. Stacking in colloidal nanoplatelets: Tuning excitonic properties. ACS Nano 2014, 8, 12524–12533.

[57]

Diroll, B. T.; Cho, W.; Coropceanu, I.; Harvey, S. M.; Brumberg, A.; Holtgrewe, N.; Crooker, S. A.; Wasielewski, M. R.; Prakapenka, V. B.; Talapin, D. V. et al. Semiconductor nanoplatelet excimers. Nano Lett. 2018, 18, 6948–6953.

File
12274_2023_5529_MOESM1_ESM.pdf (825.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2022
Revised: 10 January 2023
Accepted: 25 January 2023
Published: 02 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation (No. Z210018), the National Natural Science Foundation of China (Nos. 62105025, 12172047, 62127817, and 22173009), the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3040011182113). The authors would like to acknowledge the Experimental Center of Advanced Materials of Beijing Institute of Technology for the support in materials synthesis and characterization. We also acknowledge Dr. Xiangmin Hu for the helpful discussion. Theoretical calculations were performed using resources of the Supercomputer Centre in Chongqing.

Return