Journal Home > Volume 17 , Issue 1

Co3O4 is considered as one of promising cathode catalysts for lithium oxygen (Li-O2) batteries, which contains both tetrahedral Co2+ sites (Co2+Td) and octahedral Co3+ sites (Co3+Oh). It is important to reveal the effect of optimal geometric configuration and oxidation state of cobalt ion in Co3O4 to improve the performance of Li-O2 batteries. Herein, through regulating the synthesis process, Co2+ and Co3+ sites in Co3O4 were replaced with Zn and Al atoms to form materials with a unique Co site. The Li-O2 batteries based on ZnCo2O4 showed longer cycle life than that of CoAl2O4, suggesting that in Co3O4, the Co3+Oh site is a relatively better geometric configuration than Co2+Td site for Li-O2 batteries. Theoretical calculations revealed that Co3+Oh sites provide higher catalysis activity, regulating the adsorption energy of the intermediate LiO2 and accelerating the kinetics of the reaction in batteries, which further leads to the change of the morphology of the discharge product and ultimately improves the electrochemical performance of the batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Optimal geometrical configuration and oxidation state of cobalt cations in spinel oxides to promote the performance of Li-O2 battery

Show Author's information Yu Zhang1,§Shuting Zhang2,§Mengwei Yuan2Yufeng Li2Rong Liu3( )Caiyun Nan2( )Chen Chen1( )
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
X-ray diffraction Lab, Analytical and Testing Center, Beijing Normal University, Beijing 100875, China

§ Yu Zhang and Shuting Zhang contributed equally to this work.

Abstract

Co3O4 is considered as one of promising cathode catalysts for lithium oxygen (Li-O2) batteries, which contains both tetrahedral Co2+ sites (Co2+Td) and octahedral Co3+ sites (Co3+Oh). It is important to reveal the effect of optimal geometric configuration and oxidation state of cobalt ion in Co3O4 to improve the performance of Li-O2 batteries. Herein, through regulating the synthesis process, Co2+ and Co3+ sites in Co3O4 were replaced with Zn and Al atoms to form materials with a unique Co site. The Li-O2 batteries based on ZnCo2O4 showed longer cycle life than that of CoAl2O4, suggesting that in Co3O4, the Co3+Oh site is a relatively better geometric configuration than Co2+Td site for Li-O2 batteries. Theoretical calculations revealed that Co3+Oh sites provide higher catalysis activity, regulating the adsorption energy of the intermediate LiO2 and accelerating the kinetics of the reaction in batteries, which further leads to the change of the morphology of the discharge product and ultimately improves the electrochemical performance of the batteries.

Keywords: lithium peroxide, geometrical configuration, oxidation state, lithium oxygen (Li-O2) batteries

References(37)

[1]

Kittner, N.; Lill, F.; Kammen, D. M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125.

[2]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[3]

Xie, H.; Xie, X. H.; Hu, G. X.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M. L.; Shahbazian-Yassar, R. et al. Ta-TiOx nanoparticles as radical scavengers to improve the durability of Fe-N-C oxygen reduction catalysts. Nat. Energy 2022, 7, 281–289.

[4]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[5]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[6]

Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. A low-volatile and durable deep eutectic electrolyte for high-performance lithium-oxygen battery. J. Am. Chem. Soc. 2022, 144, 5827–5833.

[7]

Li, X. D.; Yuan, R. M.; Cao, Y.; Ding, X. B.; Cai, S. R.; Han, B. W.; Hong, Y. H.; Zhou, Z. Y.; Yang, X. L.; Gong, L. et al. Controlling reversible expansion of Li2O2 formation and decomposition by modifying electrolyte in Li-O2 batteries. Chem 2018, 4, 2685–2698.

[8]

Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Soluble and perfluorinated polyelectrolyte for safe and high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202116635.

[9]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[10]

Zhou, Y.; Yin, K.; Gu, Q. F.; Tao, L.; Li, Y. J.; Tan, H.; Zhou, J. H.; Zhang, W. S.; Li, H. B.; Guo, S. J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 26592–26598.

[11]

Zhang, Y.; Zhang, S.; Ma, J.; Huang, A.; Yuan, M.; Li, Y.; Sun, G.; Chen, C.; Nan, C. Oxygen vacancy-rich RuO2-Co3O4 nanohybrids as improved electrocatalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 39239–39247.

[12]

Miao, L. L.; Tang, X. L.; Zhao, S. Z.; Xie, X. Z.; Du, C. C.; Tang, T.; Yi, H. H. Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Res. 2022, 15, 1660–1671.

[13]

Zhang, Y.; Ma, J.; Yuan, M. W.; Li, Y.; Shen, R. A.; Cheong, W. C.; Han, T.; Sun, G. B.; Chen, C.; Nan, C. Y. The design of hollow PdO-Co3O4 nano-dodecahedrons with moderate catalytic activity for Li-O2 batteries. Chem. Commun. 2019, 55, 12683–12686.

[14]

Song, L. N.; Zhang, W.; Wang, Y.; Ge, X.; Zou, L. C.; Wang, H. F.; Wang, X. X.; Liu, Q. C.; Li, F.; Xu, J. J. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 2020, 11, 2191.

[15]

Yuan, M. W.; Wang, R.; Sun, Z. M.; Lin, L.; Yang, H.; Li, H. F.; Nan, C. Y.; Sun, G. B.; Ma, S. L. Morphology-controlled synthesis of Ni-MOFs with highly enhanced electrocatalytic performance for urea oxidation. Inorg. Chem. 2019, 58, 11449–11457.

[16]

Yu, M. Z.; Zhou, S.; Liu, Y.; Wang, Z. Y.; Zhou, T.; Zhao, J. J.; Zhao, Z. B.; Qiu, J. S. Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Sci. China Mater. 2017, 60, 415–426.

[17]

Liu, Y.; Cai, J. Y.; Zhou, J. B.; Zang, Y. P.; Zheng, X. S.; Zhu, Z. X.; Liu, B.; Wang, G. M.; Qian, Y. T. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries. eScience 2022, 2, 389–398.

[18]

Wang, G.; Zhang, S. P.; Qian, R.; Wen, Z. Y. Atomic-thick TiO2(B) nanosheets decorated with ultrafine Co3O4 nanocrystals as a highly efficient catalyst for lithium-oxygen battery. ACS Appl. Mater. Interfaces 2018, 10, 41398–41406.

[19]

Zhang, Y.; Hu, M. Z.; Yuan, M. W.; Sun, G. B.; Li, Y. F.; Zhou, K. B.; Chen, C.; Nan, C. Y.; Li, Y. D. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2019, 12, 299–302.

[20]

Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W. et al. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 2018, 8, 3803–3811.

[21]

Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

[22]

Jiang, C. R.; Yang, J.; Han, X. Y.; Qi, H. F.; Su, M.; Zhao, D. Q.; Kang, L. L.; Liu, X. Y.; Ye, J. F.; Li, J. F. et al. Crystallinity-modulated Co2−xVxO4 nanoplates for efficient electrochemical water oxidation. ACS Catal. 2021, 11, 14884–14891.

[23]

Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

[24]

Liu, X. M.; Zhao, L. L.; Xu, H. R.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2001415.

[25]

Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

[26]

Huang, J. Z.; Sheng, H. Y.; Ross, R. D.; Han, J. C.; Wang, X. J.; Song, B.; Jin, S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 2021, 12, 3036.

[27]

Hu, T. J.; Wang, Y.; Zhang, L. N.; Tang, T.; Xiao, H.; Chen, W. W.; Zhao, M.; Jia, J. F.; Zhu, H. Y. Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst. Appl. Catal. B: Environ. 2019, 243, 175–182.

[28]

Liu, Z. J.; Wang, G. J.; Zhu, X. Y.; Wang, Y. Y.; Zou, Y. Q.; Zang, S. Q.; Wang, S. Y. Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 4736–4742.

[29]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[30]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[31]

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

[32]

Lorite, I.; Romero, J. J.; Fernández, J. F. Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles. J. Raman Spectrosc. 2012, 43, 1443–1448.

[33]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[34]

Tahir, M.; Pan, L.; Zhang, R. R.; Wang, Y. C.; Shen, G. Q.; Aslam, I.; Qadeer, M. A.; Mahmood, N.; Xu, W.; Wang, L. et al. High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett. 2017, 2, 2177–2182.

[35]

Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

[36]

Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679–4684.

[37]

Shi, L.; Zhao, T. S.; Xu, A.; Wei, Z. H. Unraveling the catalytic mechanism of rutile RuO2 for the oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. ACS Catal. 2016, 6, 6285–6293.

File
12274_2023_5526_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2022
Revised: 14 January 2023
Accepted: 22 January 2023
Published: 15 March 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFF0500503) and the National Natural Science Foundation of China (Nos. 21925202 and U22B2071). We thank the 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility (BSRF).

Return