Journal Home > Volume 16 , Issue 7

The importance of optical resonance in enhancing light outcoupling efficiency (OCE) is frequently overlooked in conventional bottom-emitting quantum-dot light-emitting diodes (QLEDs) due to their weak microcavity effect. Herein, we show that by synergistically optimizing the optical and the electrical performances, QLEDs with efficiency approaching the theoretical limit can be realized. By introducing a high refractive index indium zinc oxide (IZO) electrode and optimizing its thickness, the light OCE is significantly improved and consequently the red QLEDs exhibit an external quantum efficiency (EQE) of 33.2%, which is 1.4-fold higher than that of the reference devices with conventional indium tin oxide (ITO) electrodes. Moreover, with a high refractive index plastic substrate and a microlens array, the EQE can further be improved to a record value of 37.5%. Similar results are obtained in green and blue devices, which show an EQE of 18.8% and 14.4%, respectively. We also predict that the theoretical EQE limit of red, green, and blue QLEDs can reach 35.4%–36.5%, 24.8%–34.0%, and 25.1%–35.8%, respectively, without using any light outcoupling structures. The proposed synergistic optimization strategy enables the efficiencies of red, green, and blue QLEDs to approach their theoretical limits.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Approaching the theoretical efficiency limit of quantum-dot light-emitting diodes via synergistic optimization

Show Author's information Haotao LiFengshou TianShuming Chen( )
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

The importance of optical resonance in enhancing light outcoupling efficiency (OCE) is frequently overlooked in conventional bottom-emitting quantum-dot light-emitting diodes (QLEDs) due to their weak microcavity effect. Herein, we show that by synergistically optimizing the optical and the electrical performances, QLEDs with efficiency approaching the theoretical limit can be realized. By introducing a high refractive index indium zinc oxide (IZO) electrode and optimizing its thickness, the light OCE is significantly improved and consequently the red QLEDs exhibit an external quantum efficiency (EQE) of 33.2%, which is 1.4-fold higher than that of the reference devices with conventional indium tin oxide (ITO) electrodes. Moreover, with a high refractive index plastic substrate and a microlens array, the EQE can further be improved to a record value of 37.5%. Similar results are obtained in green and blue devices, which show an EQE of 18.8% and 14.4%, respectively. We also predict that the theoretical EQE limit of red, green, and blue QLEDs can reach 35.4%–36.5%, 24.8%–34.0%, and 25.1%–35.8%, respectively, without using any light outcoupling structures. The proposed synergistic optimization strategy enables the efficiencies of red, green, and blue QLEDs to approach their theoretical limits.

Keywords: quantum dots, light-emitting diodes, microcavity, light outcoupling efficiency, theoretically maximal efficiency

References(43)

[1]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[2]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[3]

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

[4]

Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

[5]

Meng, T. T.; Zheng, Y. T.; Zhao, D. L.; Hu, H. L.; Zhu, Y. B.; Xu, Z. W.; Ju, S. M.; Jing, J. P.; Chen, X.; Gao, H. J. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022, 16, 297–303.

[6]

Vasilopoulou, M.; Yusoff, A. R. B. M.; Daboczi, M.; Conforto, J.; Gavim, A. E. X.; Da Silva, W. J.; Macedo, A. G.; Soultati, A.; Pistolis, G.; Schneider, F. K. et al. High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nat. Commun. 2021, 12, 4868.

[7]

Lim, H.; Cheon, H. J.; Woo, S. J.; Kwon, S. K.; Kim, Y. H.; Kim, J. J. Highly efficient deep-blue OLEDs using a TADF emitter with a narrow emission spectrum and high horizontal emitting dipole ratio. Adv. Mater. 2020, 32, 2004083.

[8]

Chan, C. Y.; Tanaka, M.; Lee, Y. T.; Wong, Y. W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 2021, 15, 203–207.

[9]

Yang, X. Y.; Dev, K.; Wang, J. X.; Mutlugun, E.; Dang, C.; Zhao, Y. B.; Liu, S. W.; Tang, Y. X.; Tan, S. T.; Sun, X. W. et al. Light extraction efficiency enhancement of colloidal quantum dot light-emitting diodes using large-scale nanopillar arrays. Adv. Funct. Mater. 2014, 24, 5977–5984.

[10]

Kim, J. B.; Lee, J. H.; Moon, C. K.; Kim, S. Y.; Kim, J. J. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv. Mater. 2013, 25, 3571–3577.

[11]

Zhu, Y. B.; Xu, R.; Zhou, Y. G.; Xu, Z. W.; Liu, Y.; Tian, F. Q.; Zheng, X. J.; Ma, F. M.; Alsharafi, R.; Hu, H. L. et al. Ultrahighly efficient white quantum dot light-emitting diodes operating at low voltage. Adv. Opt. Mater. 2020, 8, 2001479.

[12]

Su, Q.; Sun, Y. Z.; Zhang, H.; Chen, S. M. Origin of positive aging in quantum-dot light-emitting diodes. Adv. Sci. 2018, 5, 1800549.

[13]

Song, J. J.; Wang, O. Y.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 2019, 29, 1808377.

[14]

Furno, M.; Meerheim, R.; Hofmann, S.; Lüssem, B.; Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 2012, 85, 115205.

[15]

Barnes, W. L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661–699.

[16]

Othman, D. M.; Weinstein, J. A.; Lyu, Q.; Hou, B. Photonics design theory enhancing light extraction efficiency in quantum dot light emitting diodes. J. Phys. Mater. 2022, 5, 044009.

[17]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[18]

Chen, L. N.; Qin, Z. Y.; Chen, S. M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities. Small Methods 2022, 6, 2101090.

[19]

Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

[20]

Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

[21]

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

[22]

Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021, 21, 26–33.

[23]

Li, D.; Feng, J. W.; Zhu, Y. Q.; Lu, Z. G.; Pei, C.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution. Nano Res. 2021, 14, 4243–4249.

[24]

Wang, L. S.; Lin, J.; Lv, Y.; Zou, B. S.; Zhao, J. L.; Liu, X. Y. Red, green, and blue microcavity quantum dot light-emitting devices with narrow line widths. ACS Appl. Nano Mater. 2020, 3, 5301–5310.

[25]

Liu, G. H.; Zhou, X.; Chen, S. M. Very bright and efficient microcavity top-emitting quantum dot light-emitting diodes with Ag electrodes. ACS Appl. Mater. Interfaces 2016, 8, 16768–16775.

[26]

Shinar, R.; Shinar, J. Light extraction from organic light emitting diodes (OLEDs). J. Phys. Photonics 2022, 4, 032002.

[27]

Ma, F. Y.; Liu, X. Y. Phase shift and penetration depth of metal mirrors in a microcavity structure. Appl. Opt. 2007, 46, 6247–6250.

[28]
Yuan, C. X.; Tian, F. S.; Chen, S. M. ZnSeTe blue top-emitting QLEDs with color saturation near Rec. 2020 standards and efficiency over 18.16%. Nano Res. , in press,https://doi.org.10.1007/s12274-022-5172-y.
[29]

Tian, F. S.; Yuan, C. X.; Chen, S. M. Influence of light–matter interaction on efficiency of quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2022, 13, 10312–10317.

[30]

Tan, G. J.; Zhu, R. D.; Tsai, Y. S.; Lee, K. C.; Luo, Z. Y.; Lee, Y. Z.; Wu, S. T. High ambient contrast ratio OLED and QLED without a circular polarizer. J. Phys. D:Appl. Phys. 2016, 49, 315101.

[31]

Tang, Z. B.; Lin, J.; Wang, L. S.; Lv, Y.; Hu, Y. S.; Fan, Y.; Guo, X. Y.; Zhao, J. L.; Wang, Y. J.; Liu, X. Y. High performance, top-emitting, quantum dot light-emitting diodes with all solution-processed functional layers. J. Mater. Chem. C 2017, 5, 9138–9145.

[32]

Mladenovski, S.; Neyts, K.; Pavicic, D.; Werner, A.; Rothe, C. Exceptionally efficient organic light emitting devices using high refractive index substrates. Opt. Express 2009, 17, 7562–7570.

[33]

Zhu, R. D.; Luo, Z. Y.; Wu, S. T. Light extraction analysis and enhancement in a quantum dot light emitting diode. Opt. Express 2014, 22, A1783–A1798.

[34]

Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.

[35]

Su, Q.; Zhang, H.; Chen, S. M. Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. npj Flex. Electron. 2021, 5, 8.

[36]

Kim, J. B.; Lee, J. H.; Moon, C. K.; Kim, K. H.; Kim, J. J. Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability. Org. Electron. 2015, 17, 115–120.

[37]

Ide, N.; Yamae, K.; Kittichungchit, V.; Tsuji, H.; Ota, M.; Komoda, T. Development of extremely high efficacy white OLED with over 100 lm/W. J. Photopolym. Sci. Technol. 2014, 27, 357–361.

[38]

Shi, L. L.; Chen, S. M. Over 32.5% efficient top-emitting quantum-dot LEDs with angular-independent emission. ACS Appl. Mater. Interfaces 2022, 14, 30039–30045.

[39]

Koh, T. W.; Choi, J. M.; Lee, S.; Yoo, S. Optical outcoupling enhancement in organic light-emitting diodes: Highly conductive polymer as a low-index layer on microstructured ITO electrodes. Adv. Mater. 2010, 22, 1849–1853.

[40]

Qu, Y.; Kim, J.; Coburn, C.; Forrest, S. R. Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays. ACS Photonics 2018, 5, 2453–2458.

[41]

Thomschke, M.; Reineke, S.; Lüssem, B.; Leo, K. Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films. Nano Lett. 2012, 12, 424–428.

[42]

Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 2017, 9, 38755–38760.

[43]

Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

File
12274_2023_5520_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2022
Revised: 07 January 2023
Accepted: 18 January 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62174075), the Shenzhen Science and Technology Program (Nos. JCYJ20210324105400002 and JCYJ20220530113809022), and the Guangdong University Research Program (No. 2020ZDZX3062).

Return