Journal Home > Volume 16 , Issue 7

Metamaterial absorbers show great promise for applications in optical manipulation, photodetection, solar energy harvesting, and photocatalysis. In this work, we present a twisted stacked metamaterial design that serves as a plasmonic perfect absorber with polarization selectivity. Leveraging effective energy localization, the metamaterial realizes a near-unity absorbance of up to 99.6% for right circularly polarized incidence and 97.2% for left circularly polarized incidence. At a longer wavelength in the visible range, the chiral metamaterial becomes more sensitive to the polarization state of the incident wave, retaining an ultrahigh absorption of light (~ 94%) for only a given polarization state, that is, light in this polarization state is effectively shielded. A giant circular dichroism signal of up to 7° can be simultaneously observed. Electromagnetic field and charge distribution simulations further reveal that the ultrahigh performance of the design is attributed to the interplay between cavity coupling, magnetic resonances, and plasmonic coupling. Besides switchable and tunable chirality, the plasmonic metamaterial presents a near-perfect absorption band with tunable operational wavelengths. We envision that the high-performance chiral gold metamaterial proposed here can serve as a good candidate for light trapping, chirality sensing, polarized light detection, and polarization-enhanced photocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polarization-selective nanogold absorber by twisted stacking

Show Author's information Fei Wang1,2Zexiang Han1Juehan Sun1,3Wajid Ali1,3Xiaoli Wang1,3( )Zhiyong Tang1,2,3
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Metamaterial absorbers show great promise for applications in optical manipulation, photodetection, solar energy harvesting, and photocatalysis. In this work, we present a twisted stacked metamaterial design that serves as a plasmonic perfect absorber with polarization selectivity. Leveraging effective energy localization, the metamaterial realizes a near-unity absorbance of up to 99.6% for right circularly polarized incidence and 97.2% for left circularly polarized incidence. At a longer wavelength in the visible range, the chiral metamaterial becomes more sensitive to the polarization state of the incident wave, retaining an ultrahigh absorption of light (~ 94%) for only a given polarization state, that is, light in this polarization state is effectively shielded. A giant circular dichroism signal of up to 7° can be simultaneously observed. Electromagnetic field and charge distribution simulations further reveal that the ultrahigh performance of the design is attributed to the interplay between cavity coupling, magnetic resonances, and plasmonic coupling. Besides switchable and tunable chirality, the plasmonic metamaterial presents a near-perfect absorption band with tunable operational wavelengths. We envision that the high-performance chiral gold metamaterial proposed here can serve as a good candidate for light trapping, chirality sensing, polarized light detection, and polarization-enhanced photocatalysis.

Keywords: chirality, plasmonic, perfect absorber, magnetic field enhancement, metal–dielectric–metal

References(52)

[1]

Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

[2]

Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H.; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931–3942.

[3]

Kim, J.; Han, K.; Hahn, J. W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740.

[4]

Xu, W. D.; Xie, L. J.; Ying, Y. B. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878.

[5]

Yu, P.; Besteiro, L. V.; Huang, Y. J.; Wu, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Wiederrecht, G. P.; Govorov, A. O.; Wang, Z. M. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995.

[6]

You, W. B.; Pei, K.; Yang, L. T.; Li, X.; Shi, X. F.; Yu, X. F.; Guo, H. Q.; Che, R. C. In situ dynamics response mechanism of the tunable length–diameter ratio nanochains for excellent microwave absorber. Nano Res. 2020, 13, 72–78.

[7]

Feng, L.; Huo, P. C.; Liang, Y. Z.; Xu, T. Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications. Adv. Mater. 2020, 32, 1903787.

[8]

Almeida, E.; Bitton, O.; Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 2016, 7, 12533.

[9]

Karvounis, A.; Gholipour, B.; MacDonald, K. F.; Zheludev, N. I. Giant electro-optical effect through electrostriction in a nanomechanical metamaterial. Adv. Mater. 2019, 31, 1804801.

[10]

Chen, Q.; Song, S. C.; Wang, H. C.; Liang, L.; Dong, Y. J.; Wen, L. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. Nano Res. 2021, 14, 2673–2680.

[11]

Hu, R.; Xi, W.; Liu, Y. D.; Tang, K. C.; Song, J. L.; Luo, X. B.; Wu, J. Q.; Qiu, C. W. Thermal camouflaging metamaterials. Mater. Today 2021, 45, 120–141.

[12]

Lee, N.; Lim, J. S.; Chang, I.; Bae, H. M.; Nam, J.; Cho, H. H. Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater. 2022, 10, 2200448.

[13]

Feng, X. D.; Xie, X.; Pu, M. B.; Ma, X. L.; Guo, Y. H.; Li, X.; Luo, X. G. Hierarchical metamaterials for laser–infrared–microwave compatible camouflage. Opt. Express 2020, 28, 9445–9453.

[14]

Yu, B. Y.; Zhao, Y. J.; Chen, J. Q.; Ge, Y.; Chen, X. F. Broadband transparent metamaterial absorber in wireless communication band based on indium tin oxide film. Int. J. RF Microwave Comput. Aided Eng. 2019, 29, e21955.

[15]

Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402.

[16]

Bhattarai, K.; Silva, S.; Song, K.; Urbas, A.; Lee, S. J.; Ku, Z.; Zhou, J. F. Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Sci. Rep. 2017, 7, 10569.

[17]

Hwang, J.; Oh, B.; Kim, Y.; Silva, S.; Kim, J. O.; Czaplewski, D. A.; Ryu, J. E.; Kim, E. K.; Urbas, A.; Zhou, J. F. et al. Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating. Sci. Rep. 2018, 8, 14787.

[18]

Zhang, L.; Wang, Y.; Zhou, L.; Chen, F. Tunable perfect absorber based on gold grating including phase-changing material in visible range. Appl. Phys. A 2019, 125, 368.

[19]

Zhang, N.; Ji, Z. H.; Cheney, A. R.; Song, H. M.; Ji, D. X.; Zeng, X.; Chen, B. R.; Zhang, T. M.; Cartwright, A. N.; Shi, K. B. et al. Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces. Sci. Rep. 2017, 7, 4346.

[20]

Li, Y. Y.; Liu, Z. Q.; Zhang, H. J.; Tang, P.; Wu, B.; Liu, G. Q. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 2019, 27, 11809–11818.

[21]

Yong, Z. D.; Zhang, S. L.; Gong, C. S.; He, S. L. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 2016, 6, 24063.

[22]

Zhao, Y.; Huang, Q. P.; Cai, H. L.; Lin, X. X.; Lu, Y. L. A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun. 2018, 426, 443–449.

[23]

Du, C.; Zhou, D.; Guo, H. H.; Pang, Y. Q.; Shi, H. Y.; Liu, W. F.; Su, J. Z.; Singh, C.; Trukhanov, S.; Trukhanov, A. et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale 2020, 12, 9769–9775.

[24]

Yang, Y. M.; Kelley, K.; Sachet, E.; Campione, S.; Luk, T. S.; Maria, J. P.; Sinclair, M. B.; Brener, I. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 2017, 11, 390–395.

[25]

Huang, T. Y.; Tseng, C. W.; Yeh, T. T.; Yeh, T. T.; Luo, C. W.; Akalin, T.; Yen, T. J. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process. Sci. Rep. 2015, 5, 18605.

[26]

Unal, E.; Dincer, F.; Tetik, E.; Karaaslan, M.; Bakir, M.; Sabah, C. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9735–9740.

[27]

Xiong, X.; Jiang, S. C.; Hu, Y. H.; Peng, R. W.; Wang, M. Structured metal film as a perfect absorber. Adv. Mater. 2013, 25, 3994–4000.

[28]

Hu, E. T.; Liu, X. X.; Yao, Y.; Zang, K. Y.; Tu, Z. J.; Jiang, A. Q.; Yu, K. H.; Zheng, J. J.; Wei, W.; Zheng, Y. X. et al. Multilayered metal–dielectric film structure for highly efficient solar selective absorption. Mater. Res. Express 2018, 5, 066428.

[29]

Koya, A. N.; Cunha, J.; Guo, T. L.; Toma, A.; Garoli, D.; Wang, T.; Juodkazis, S.; Cojoc, D.; Proietti Zaccaria, R. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv. Opt. Mater. 2020, 8, 1901481.

[30]

Baranov, D. G.; Krasnok, A.; Shegai, T.; Alù, A.; Chong, Y. D. Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2017, 2, 17064.

[31]

Lu, X. Y.; Lin, J. T. Field enhancement of a metal grating with nanocavities and its sensing applications. J. Opt. 2017, 19, 055004.

[32]

Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

[33]

Wang, Y.; Zhang, X. P. Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings. Nanoscale 2019, 11, 17807–17814.

[34]

Bochenkov, V. E.; Shabatina, T. I. Chiral plasmonic biosensors. Biosensors (Basel) 2018, 8, 120.

[35]

Liu, G. S.; Xiong, X.; Hu, S. Q.; Shi, W. C.; Chen, Y. F.; Zhu, W. G.; Zheng, H. D.; Yu, J. H.; Azeman, N. H.; Luo, Y. H. et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photonics Res. 2020, 8, 448–456.

[36]

Zu, S.; Han, T. Y.; Jiang, M. L.; Liu, Z. X.; Jiang, Q.; Lin, F.; Zhu, X.; Fang, Z. Y. Imaging of plasmonic chiral radiative local density of states with cathodoluminescence nanoscopy. Nano Lett. 2019, 19, 775–780.

[37]

Qu, G. Y.; Yang, W. H.; Song, Q. H.; Liu, Y. L.; Qiu, C. W.; Han, J. C.; Tsai, D. P.; Xiao, S. M. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 2020, 11, 5484.

[38]

Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401.

[39]

Alali, F.; Kim, Y. H.; Baev, A.; Furlani, E. P. Plasmon-enhanced metasurfaces for controlling optical polarization. ACS Photonics 2014, 1, 507–515.

[40]

Ouyang, L. X.; Wang, W.; Rosenmann, D.; Czaplewski, D. A.; Gao, J.; Yang, X. D. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489.

[41]

Mahmud, S.; Rosenmann, D.; Czaplewski, D. A.; Gao, J.; Yang, X. D. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range. Opt. Lett. 2020, 45, 5372–5375.

[42]

Wu, Z. L.; Zheng, Y. B. Moiré chiral metamaterials. Adv. Opt. Mater. 2017, 5, 1700034.

[43]

Kurokawa, Y.; Miyazaki, H. T. Metal–insulator–metal plasmon nanocavities: Analysis of optical properties. Phys. Rev. B 2007, 75, 035411.

[44]

Ameling, R.; Giessen, H. Cavity plasmonics: Large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett. 2010, 10, 4394–4398.

[45]

Qu, Y.; Zhang, Y.; Wang, F.; Li, H.; Ullah, H.; Aba, T.; Wang, Y. K.; Fu, T.; Zhang, Z. Y. A general mechanism for achieving circular dichroism in a chiral plasmonic system. Ann. Phys. 2018, 530, 1800142.

[46]

Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4, 899–903.

[47]

Wang, Y. K.; Wen, X. J.; Qu, Y.; Fu, T.; Zhang, Z. Y. Direct and indirect coupling mechanisms in a chiral plasmonic system. J. Phys. D Appl. Phys. 2016, 49, 405104.

[48]

Wu, P. H.; Chen, Z. Q.; Jile, H.; Zhang, C. F.; Xu, D. Y.; Lv, L. An infrared perfect absorber based on metal–dielectric–metal multi-layer films with nanocircle holes arrays. Results Phys. 2020, 16, 102952.

[49]

Li, G. Z.; Shen, Y.; Xiao, G. H.; Jin, C. J. Double-layered metal grating for high-performance refractive index sensing. Opt. Express 2015, 23, 8995–9003.

[50]

Kim, D.; Yu, J.; Hwang, I.; Park, S.; Demmerle, F.; Boehm, G.; Amann, M. C.; Belkin, M. A.; Lee, J. Giant nonlinear circular dichroism from intersubband polaritonic metasurfaces. Nano Lett. 2020, 20, 8032–8039.

[51]

Kang, L.; Wang, C. Y.; Guo, X. X.; Ni, X. J.; Liu, Z. W.; Werner, D. H. Nonlinear chiral meta-mirrors: Enabling technology for ultrafast switching of light polarization. Nano Lett. 2020, 20, 2047–2055.

[52]

Liu, T. J.; Besteiro, L. V.; Liedl, T.; Correa-Duarte, M. A.; Wang, Z. M.; Govorov, A. O. Chiral plasmonic nanocrystals for generation of hot electrons: Toward polarization-sensitive photochemistry. Nano Lett. 2019, 19, 1395–1407.

File
12274_2023_5518_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2022
Revised: 08 January 2023
Accepted: 18 January 2023
Published: 13 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21975060, X. L. W.) and Youth Innovation Promotion Association CAS (No. 2019039, X. L. W.). This work was also supported by financial support from the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000, Z. Y. T.), National Key Basic Research Program of China (No. 2016YFA0200700, Z. Y. T.), National Natural Science Foundation of China (Nos. 92056204, 21890381, and 21721002, Z. Y. T.), and Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z. Y. T.).

Return