Journal Home > Volume 16 , Issue 7

The development of highly active catalysts is the key to the successful application of sulfate radical (SO4·−)-based advanced oxidation processes (AOPs) to wastewater treatment. Herein, bimetallic oxide CoMn2O4 hierarchical porous nanosheets (CoMn2O4 HPNSs) were constructed using glucose/urea deep eutectic solvent (DES) as sustainable solvent and self-formed sacrificial carbon templates. The prepared CoMn2O4 HPNS exhibited outstanding peroxymonosulfate (PMS) activation performance, achieving the rapid degradation of refractory organic compounds in wastewater, including 5-sulfosalicylic acid (100%), acetaminophen (100%), oxtetracycline (100%), and sulfamethoxazole (91%) within 20 min. This excellent performance was attributed not only to the synergistic catalytic effect of Co-Mn bimetals, but also to the hierarchical porous structure which exposes more active sites and accelerates the migration of PMS and organic pollutants. In addition, CoMn2O4 HPNS also showed excellent reusability and high stability in multiple cycles of degradation. The active species quenching results and electron paramagnetic resonance measurements revealed that SO4·− greatly contributed to organic degradation, while 1O2 and ·OH also involved. Moreover, a series of other transition metal oxides (Co3O4, Fe2O3, Mn3O4, NiO, and CoFe2O4) with hierarchical porous nanosheet structures were successfully fabricated with this method. This study provides a simple, general, and low-cost strategy for fabricating hierarchical porous transition metal oxides, which are promising for the environmental remediation or many other applications in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical porous nanosheets of Co-Mn bimetallic oxide from deep eutectic solvent for highly efficient peroxymonosulfate activation

Show Author's information Jiale Wei1,2Kai Rong1,2Yuchen Wang1,2Ling Liu1Youxing Fang1( )Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China

Abstract

The development of highly active catalysts is the key to the successful application of sulfate radical (SO4·−)-based advanced oxidation processes (AOPs) to wastewater treatment. Herein, bimetallic oxide CoMn2O4 hierarchical porous nanosheets (CoMn2O4 HPNSs) were constructed using glucose/urea deep eutectic solvent (DES) as sustainable solvent and self-formed sacrificial carbon templates. The prepared CoMn2O4 HPNS exhibited outstanding peroxymonosulfate (PMS) activation performance, achieving the rapid degradation of refractory organic compounds in wastewater, including 5-sulfosalicylic acid (100%), acetaminophen (100%), oxtetracycline (100%), and sulfamethoxazole (91%) within 20 min. This excellent performance was attributed not only to the synergistic catalytic effect of Co-Mn bimetals, but also to the hierarchical porous structure which exposes more active sites and accelerates the migration of PMS and organic pollutants. In addition, CoMn2O4 HPNS also showed excellent reusability and high stability in multiple cycles of degradation. The active species quenching results and electron paramagnetic resonance measurements revealed that SO4·− greatly contributed to organic degradation, while 1O2 and ·OH also involved. Moreover, a series of other transition metal oxides (Co3O4, Fe2O3, Mn3O4, NiO, and CoFe2O4) with hierarchical porous nanosheet structures were successfully fabricated with this method. This study provides a simple, general, and low-cost strategy for fabricating hierarchical porous transition metal oxides, which are promising for the environmental remediation or many other applications in the future.

Keywords: deep eutectic solvent, peroxymonosulfate, CoMn2O4, hierarchical porous nanosheet, 5-sulfosalicylic acid

References(65)

[1]

Zhu, M.; Miao, J.; Duan, X. G.; Guan, D. Q.; Zhong, Y. J.; Wang, S. B.; Zhou, W.; Shao, Z. P. Postsynthesis growth of CoOOH nanostructure on SrCo0.6Ti0.4O3−δ perovskite surface for enhanced degradation of aqueous organic contaminants. ACS Sustainable Chem. Eng. 2018, 6, 15737–15748.

[2]

Ebele, A. J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contam. 2017, 3, 1–16.

[3]

Singh, S.; Kaur, P.; Abhivyakti; Kumar, V.; Tikoo, K.; Singhal, S. Facile integration of a novel Sm-doped CoFe2O4@g-CN heterostructure to expedite PMS and H2O2 assisted degradation of pharmaceutical pollutants. Appl. Surf. Sci. 2022, 580, 152254.

[4]

Zhao, J.; Shen, Z.; Yu, J.; Guo, Y.; Mushtaq, M. A.; Ding, Y. B.; Song, Z. Q.; Zhang, W.; Huang, X.; Li, Y. et al. Constructing Cu-CuO heterostructured skin on Cu cubes to promote electrocatalytic ammonia production from nitrate wastewater. J. Hazard. Mater. 2022, 439, 129653.

[5]

Martínez-Huitle, C. A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340.

[6]

Li, Y. T.; Gutiérrez Moreno, J. J.; Song, Z. Q.; Liu, D. Q.; Wang, M. Y.; Ramiere, A.; Feng, Z. X.; Niu, Q. J.; Sasaki, T.; Cai, X. K. Controlled synthesis of perforated oxide nanosheets with high density nanopores showing superior water purification performance. ACS Appl. Mater. Interfaces 2022, 14, 18513–18524.

[7]

Luo, H. W.; Zeng, Y. F.; He, D. Q.; Pan, X. L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chem. Eng. J. 2021, 407, 127191.

[8]

Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B:Environ. 2016, 181, 103–117.

[9]

Zhu, M.; Miao, J.; Guan, D. Q.; Zhong, Y. J.; Ran, R.; Wang, S. B.; Zhou, W.; Shao, Z. P. Efficient wastewater remediation enabled by self-assembled perovskite oxide heterostructures with multiple reaction pathways. ACS Sustainable Chem. Eng. 2020, 8, 6033–6042.

[10]

Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D. N.; Rodríguez-Chueca, J. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A Review. Water 2018, 10, 1828.

[11]

Kohantorabi, M.; Moussavi, G.; Giannakis, S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021, 411, 127957.

[12]

Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B:Environ. 2016, 194, 169–201.

[13]

Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.

[14]

Zheng, X. X.; Niu, X. J.; Zhang, D. Q.; Lv, M. Y.; Ye, X. Y.; Ma, J. L.; Lin, Z.; Fu, M. L. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review. Chem. Eng. J. 2022, 429, 132323.

[15]

Ma, Q. P.; Zhang, Y. Y.; Zhu, X. Y.; Chen, B. L. Hollow multi-shelled Co3O4 as nanoreactors to activate peroxymonosulfate for highly effective degradation of carbamazepine: A novel strategy to reduce nano-catalyst agglomeration. J. Hazard. Mater. 2022, 427, 127890.

[16]

Xu, C. J.; Tan, J. K.; Zhang, X. D.; Huang, Y. M. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin. Sep. Purif. Technol. 2022, 291, 120933.

[17]

Cai, P. C.; Zhao, J.; Zhang, X. H.; Zhang, T. Y.; Yin, G. M.; Chen, S.; Dong, C. L.; Huang, Y. C.; Sun, Y. Y.; Yang, D. J. et al. Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl. Catal. B:Environ. 2022, 306, 121091.

[18]

Li, J.; Xu, M. J.; Yao, G.; Lai, B. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation. Chem. Eng. J. 2018, 348, 1012–1024.

[19]

Li, C. X.; Chen, C. B.; Lu, J. Y.; Cui, S.; Li, J.; Liu, H. Q.; Li, W. W.; Zhang, F. Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation. Chem. Eng. J. 2018, 337, 101–109.

[20]

Kang, S. M.; Hwang, J. CoMn2O4 embedded hollow activated carbon nanofibers as a novel peroxymonosulfate activator. Chem. Eng. J. 2021, 406, 127158.

[21]

Yao, Y. J.; Cai, Y. M.; Wu, G. D.; Wei, F. Y.; Li, X. Y.; Chen, H.; Wang, S. B. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-like reaction in water. J. Hazard. Mater. 2015, 296, 128–137.

[22]

Li, Y.; Talib, S. H.; Liu, D. Q.; Zong, K.; Saad, A.; Song, Z. Q.; Zhao, J.; Liu, W.; Liu, F. D.; Ji, Q. Q. et al. Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B:Environ. 2023, 320, 122023.

[23]

Lu, Y. T.; Zhang, W. X.; Yang, F.; Dong, X. X.; Zhu, C. Z.; Wang, X. Y.; Li, L. L.; Yu, C.; Yuan, A. H. Tailored oxygen defect coupling composition engineering CoxMn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation. Sep. Purif. Technol. 2022, 282, 120051.

[24]

Lin, C. H.; Shi, D. J.; Wu, Z. T.; Zhang, L. F.; Zhai, Z. C.; Fang, Y. S.; Sun, P.; Han, R. R.; Wu, J. Q.; Liu, H. CoMn2O4 catalyst prepared using the sol-gel method for the activation of peroxymonosulfate and degradation of UV filter 2-phenylbenzimidazole-5-sulfonic acid (PBSA). Nanomaterials 2019, 9, 774.

[25]
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71.
[26]

Yu, D. K.; Xue, Z. M.; Mu, T. C. Eutectics: Formation, properties, and applications. Chem. Soc. Rev. 2021, 50, 8596–8638.

[27]

Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

[28]

Zhang, Q. H.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146.

[29]

Datta, S.; Jo, C.; De Volder, M.; Torrente-Murciano, L. Morphological control of nanostructured V2O5 by deep eutectic solvents. ACS Appl. Mater. Interfaces 2020, 12, 18803–18812.

[30]

Baby, J. N.; Sriram, B.; Wang, S. F.; George, M. Effect of various deep eutectic solvents on the sustainable synthesis of MgFe2O4 nanoparticles for simultaneous electrochemical determination of nitrofurantoin and 4-nitrophenol. ACS Sustainable Chem. Eng. 2020, 8, 1479–1486.

[31]

Hong, S. K.; Cheng, Y.; Hariyani, S.; Li, J. Z.; Doughty, R. M.; Mantravadi, A.; Adeyemi, A. N.; Smith, E. A.; Brgoch, J.; Osterloh, F. E. et al. The deep eutectic solvent precipitation synthesis of metastable Zn4V2O9. Inorg. Chem. 2022, 61, 154–169.

[32]

Baby, J. N.; Sriram, B.; Wang, S. F.; George, M. Versatile deep eutectic solvent assisted synthesis of ZnB2O4 (B = Al, Co, Cr) spinels: The effect of B site variants for comparing the bifunctional electrochemical sensing application. Chem. Eng. J. 2022, 435, 134136.

[33]

Wagle, D. V.; Zhao, H.; Baker, G. A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308.

[34]

Wei, J. L.; Rong, K.; Li, X. L.; Wang, Y. C.; Qiao, Z. A.; Fang, Y. X.; Dong, S. J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 15, 2756–2763.

[35]

Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.

[36]

Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang, P.; Chen, Q. W. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.

[37]

Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Two-dimensional porous micro/nano metal oxides templated by graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 11984–11990.

[38]

Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

[39]

Zhao, X. F.; Niu, C. G.; Zhang, L.; Guo, H.; Wen, X. J.; Liang, C.; Zeng, G. M. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11–21.

[40]

Deng, J.; Shao, Y. S.; Gao, N. Y.; Tan, C. Q.; Zhou, S. Q.; Hu, X. H. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J. Hazard. Mater. 2013, 262, 836–844.

[41]

Ren, Y. M.; Lin, L. Q.; Ma, J.; Yang, J.; Feng, J.; Fan, Z. J. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl. Catal. B:Environ. 2015, 165, 572–578.

[42]

Yun, W. C.; Lin, K. Y. A.; Tong, W. C.; Lin, Y. F.; Du, Y. C. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337.

[43]
Su, S. N.; Guo, W. L.; Leng, Y. Q.; Yi, C. L.; Ma, Z. M. Heterogeneous activation of oxone by CoxFe3−xO4 nanocatalysts for degradation of rhodamine B. J. Hazard. Mater. 2013, 244–245, 736–742.
[44]

Feng, Y.; Wu, D. L.; Deng, Y.; Zhang, T.; Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127.

[45]

Xiao, K. B.; Liang, F. W.; Liang, J. Z.; Xu, W. C.; Liu, Z.; Chen, B. R.; Jiang, X. D.; Wu, X. L.; Xu, J. N.; Beiyuan, J. et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 433, 134387.

[46]

Tuan, D. D.; Hu, C.; Kwon, E.; Du, Y. C.; Lin, K. Y. A. Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Appl. Surf. Sci. 2020, 532, 147382.

[47]

Li, W.; Li, Y. X.; Zhang, D. Y.; Lan, Y. Q.; Guo, J. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate. J. Hazard. Mater. 2020, 381, 121209.

[48]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[49]

Long, L. L.; Su, L. L.; Hu, W.; Deng, S. H.; Chen, C.; Shen, F.; Xu, M.; Huang, G. X.; Yang, G. Micro-mechanism of multi-pathway activation peroxymonosulfate by copper-doped cobalt silicate: The dual role of copper. Appl. Catal. B:Environ. 2022, 309, 121276.

[50]

Li, Z. L.; Wang, M.; Jin, C. Y.; Kang, J.; Liu, J.; Yang, H. R.; Zhang, Y. Q.; Pu, Q. Y.; Zhao, Y.; You, M. Y. et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123789.

[51]

Nguyen, T. B.; Huang, C. P.; Doong, R. A.; Wang, M. H.; Chen, C. W.; Dong, C. D. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem. Eng. J. 2022, 436, 135244.

[52]

Chen, L. W.; Yang, S. J.; Zuo, X.; Huang, Y.; Cai, T. M.; Ding, D. H. Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chem. Eng. J. 2018, 354, 856–865.

[53]

Hu, J.; Zeng, X. K.; Wang, G.; Qian, B. B.; Liu, Y.; Hu, X. Y.; He, B.; Zhang, L.; Zhang, X. W. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation. Chem. Eng. J. 2020, 400, 125869.

[54]

Zhou, L. L.; Liu, P. X.; Ding, Y.; Xi, J. R.; Liu, L. J.; Wang, W. K.; Xu, J. Hierarchically porous structure of two-dimensional nano-flakes assembled flower-like NiO promotes the formation of surface-activated complex during persulfate activation. Chem. Eng. J. 2022, 430, 133134.

[55]

Wang, Y. P.; Liu, C.; Zhang, Y. T.; Meng, W. D.; Yu, B.; Pu, S. Y.; Yuan, D. H.; Qi, F.; Xu, B. B.; Chu, W. Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism. Appl. Catal. B:Environ. 2018, 235, 264–273.

[56]

Han, S. K.; Hwang, T. M.; Yoon, Y.; Kang, J. W. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR). Chemosphere 2011, 84, 1095–1101.

[57]

Guo, Z. Y.; Li, C. X.; Gao, M.; Han, X.; Zhang, Y. J.; Zhang, W. J.; Li, W. W. Mn-O covalency governs the intrinsic activity of Co-Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem., Int. Ed. 2021, 60, 274–280.

[58]

Zhu, S. S.; Li, X. J.; Kang, J.; Duan, X. G.; Wang, S. B. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 2019, 53, 307–315.

[59]

Zeng, Z. H.; Khan, A.; Wang, Z. X.; Zhao, M. M.; Mo, W. L.; Chen, Z. Q. Elimination of atrazine through radical/non-radical combined processes by manganese nano-catalysts/PMS and implications to the structure–performance relationship. Chem. Eng. J. 2020, 397, 125425.

[60]

Cao, W. R.; Lyu, L.; Deng, K. L.; Lu, C.; Hu, C. L-ascorbic acid oxygen-induced micro-electronic fields over metal-free polyimide for peroxymonosulfate activation to realize efficient multi-pathway destruction of contaminants. J. Mater. Chem. A 2020, 8, 810–819.

[61]

Zhang, L. S.; Jiang, X. H.; Zhong, Z. A.; Tian, L.; Sun, Q.; Cui, Y. T.; Lu, X.; Zou, J. P.; Luo, S. L. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew. Chem., Int. Ed. 2021, 60, 21751–21755.

[62]

Guan, Z. Y.; Kwon, E.; Lee, J.; Lin, Y. F.; Lin, K. Y. A. Electrospun cobalt ferrite nanofiber as a magnetic and effective heterogeneous catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Sep. Purif. Technol. 2021, 259, 118163.

[63]

Li, M. C.; Ghanbari, F.; Chang, F. C.; Hu, C.; Lin, K. Y. A.; Du, Y. C. Enhanced degradation of 5-sulfosalicylic acid using peroxymonosulfate activated by ordered porous silica-confined Co3O4 prepared via a solvent-free confined space strategy. Sep. Purif. Technol. 2020, 249, 116972.

[64]

Li, M. H.; Da Oh, W.; Lin, K. Y. A.; Hung, C.; Hu, C.; Du, Y. C. Development of 3-dimensional Co3O4 catalysts with various morphologies for activation of oxone to degrade 5-sulfosalicylic acid in water. Sci. Total Environ. 2020, 724, 138032.

[65]

Lin, X. R.; Kwon, E.; Hung, C.; Huang, C. W.; Oh, W. D.; Lin, K. Y. A. Co3O4 nanocube-decorated nitrogen-doped carbon foam as an enhanced 3-dimensional hierarchical catalyst for activating oxone to degrade sulfosalicylic acid. J. Colloid Interface Sci. 2021, 584, 749–759.

File
12274_2023_5517_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2022
Revised: 06 January 2023
Accepted: 18 January 2023
Published: 13 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22074137 and 21721003), and High Technology Industrialization Special of Science and Technology Cooperation of Jilin Province and the Chinese Academy of Sciences (No. 2021SYHZ0036).

Return