Journal Home > Volume 16 , Issue 7

Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers (LOHCs) is crucial to alleviating the global energy and environmental crisis. In this study, we report a rational strategy that can realize atomically dispersed Ni atoms anchored on vacancy-abundant boron nitride nanosheets (Ni1/h-BNNS) with high specific surface area (up to 622 m2·g−1) and abundant hydroxyl groups for high efficient hydrogen production. Methanol dehydrogenation results show an excellent hydrogen production performance catalyzed by this Ni1/h-BNNS, as evidenced by a remarkably high H2 yield rate (1684.23 mol·molNi−1·h−1), nearly 100% selectivity toward hydrogen and CO, and high anti-coking performance. Density functional theory (DFT) calculations reveal that the outstanding catalytic performance of Ni1/h-BNNS primarily originates from the unique coordinated environment of atomically dispersed Ni (Ni-B2O2) and the synergistic interaction between Ni single atoms and the h-BNNS support. Specifically, the coordinated O atoms play a decisive role in promoting the activity of Ni, and the neighboring B sites significantly decrease the energy barriers for the adsorption of key intermediates of methanol dehydrogenation. This study offers a novel strategy for developing high-performance and stable single-atom Ni catalysts by precisely controlling single-atom sites on h-BN support for sustainable hydrogen production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient hydrogen production from methanol by single nickel atoms anchored on defective boron nitride nanosheet

Show Author's information Shengshu Yang1,2Fang Zhang3Haifa Qiu4Ming Yang4Fengjuan Qin5Hao Tang5Wenxing Chen5Zhengang Liu1,2( )
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Analytical and Testing Center, Beijing Institute of Technology, Beijing 100081, China
Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong 999077, China
Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers (LOHCs) is crucial to alleviating the global energy and environmental crisis. In this study, we report a rational strategy that can realize atomically dispersed Ni atoms anchored on vacancy-abundant boron nitride nanosheets (Ni1/h-BNNS) with high specific surface area (up to 622 m2·g−1) and abundant hydroxyl groups for high efficient hydrogen production. Methanol dehydrogenation results show an excellent hydrogen production performance catalyzed by this Ni1/h-BNNS, as evidenced by a remarkably high H2 yield rate (1684.23 mol·molNi−1·h−1), nearly 100% selectivity toward hydrogen and CO, and high anti-coking performance. Density functional theory (DFT) calculations reveal that the outstanding catalytic performance of Ni1/h-BNNS primarily originates from the unique coordinated environment of atomically dispersed Ni (Ni-B2O2) and the synergistic interaction between Ni single atoms and the h-BNNS support. Specifically, the coordinated O atoms play a decisive role in promoting the activity of Ni, and the neighboring B sites significantly decrease the energy barriers for the adsorption of key intermediates of methanol dehydrogenation. This study offers a novel strategy for developing high-performance and stable single-atom Ni catalysts by precisely controlling single-atom sites on h-BN support for sustainable hydrogen production.

Keywords: boron nitride, single-atom catalyst, coordination environment, hydrogen production, liquid organic hydrogen carriers

References(42)

[1]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[2]

Han, J. T.; Xue, Z. H.; Zhang, K.; Wang, H. H.; Li, X. H.; Chen, J. S. Atomically dispersed Ni-based anti-coking catalysts for methanol dehydrogenation in a fixed-bed reactor. ACS Catal. 2020, 10, 12569–12574.

[3]

Nguyen, L.; Zhang, S. R.; Tan, L.; Tang, Y.; Liu, J. Y.; Tao, F. F. Ir1Znn bimetallic site for efficient production of hydrogen from methanol. ACS Sustainable Chem. Eng. 2019, 7, 18793–18800.

[4]

Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S. Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

[5]

Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z. W.; Saw, E. T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem 2015, 8, 3556–3575.

[6]

Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C. M.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

[7]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[8]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[9]

Jin, H. Y.; Sultan, S.; Ha, M. R.; Tiwari, J. N.; Kim, M. G.; Kim, K. S. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2000531.

[10]

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

[11]

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

[12]
Wu, P. W.; Song, X.; Chen, L. L.; He, L. W.; Wu, Y. C.; Tao, D. J.; He, J.; Deng, C.; Lu, L. J.; Chao, Y. H. et al. Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. Green Energy Environ., in press, http://doi.org/10.1016/j.gee.2022.08.003.
[13]

Han, R.; Liu, F.; Wang, X. F.; Huang, M. H.; Li, W. X.; Yamauchi, Y.; Sun, X. D.; Huang, Z. G. Functionalised hexagonal boron nitride for energy conversion and storage. J. Mater. Chem. A 2020, 8, 14384–14399.

[14]

Li, D. L.; Li, W. L.; Zhang, J. P. Fe doped BN monolayer: A promising low-cost single atom catalyst for promoted CO oxidation activity. Appl. Surf. Sci. 2020, 525, 146567.

[15]

Datta, J.; Majumder, C. Stabilizing Co, Ni and Cu on the h-BN surface: Using O–O bond activation to probe their performance as single atom catalyst. Catal. Today 2021, 370, 75–82.

[16]

Dong, J. H.; Gao, L. J.; Fu, Q. Hexagonal boron nitride meeting metal: A new opportunity and territory in heterogeneous catalysis. J. Phys. Chem. Lett. 2021, 12, 9608–9619.

[17]

Bu, K. K.; Deng, J.; Zhang, X. Y.; Kuboon, S.; Yan, T. T.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane. Appl. Catal. B Environ. 2020, 267, 118692.

[18]

Cao, L.; Dai, P. C.; Tang, J.; Li, D.; Chen, R. H.; Liu, D. D.; Gu, X.; Li, L. J.; Bando, Y.; Ok, Y. S. et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 8755–8762.

[19]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[20]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter. 1994, 50, 17953–17979.

[21]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[22]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[23]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[24]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[25]

Zhang, Z. L.; Su, J.; Matias, A. S.; Gordon, M.; Liu, Y. S.; Guo, J. H.; Song, C. Y.; Dun, C.; Prendergast, D.; Somorjai, G. et al. Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni Nanoclusters immobilized on defect-rich h-BN nanosheets. Proc. Natl. Acad. Sci. USA 2020, 117, 29442–29452.

[26]

Yin, J.; Li, J. D.; Hang, Y.; Yu, J.; Tai, G. A.; Li, X. M.; Zhang, Z. H.; Guo, W. L. Boron nitride nanostructures: Fabrication, functionalization and applications. Small 2016, 12, 2942–2968.

[27]

Lei, Y.; Pakhira, S.; Fujisawa, K.; Liu, H.; Guerrero-Bermea, C.; Zhang, T. Y.; Dasgupta, A.; Martinez, L. M.; Singamaneni, S. R.; Wang, K. et al. Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Mater. Today 2021, 51, 108–116.

[28]

Dai, L.; Wei, Y. C.; Xu, X. Y.; Wu, P. W.; Zhang, M.; Wang, C.; Li, H. P.; Zhang, Q.; Li, H. M.; Zhu, W. S. Boron and nitride dual vacancies on metal-free oxygen doping boron nitride as initiating sites for deep aerobic oxidative desulfurization. ChemCatChem 2020, 12, 1734–1742.

[29]

Kim, D.; Nakajima, S.; Sawada, T.; Iwasaki, M.; Kawauchi, S.; Zhi, C. Y.; Bando, Y.; Golberg, D.; Serizawa, T. Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. Chem. Commun. (Camb.) 2015, 51, 7104–7107.

[30]

Zhou, Y.; Wang, Q. W.; Tian, X. L.; Chang, J. F.; Feng, L. G. Electron-enriched Pt induced by CoSe2 promoted bifunctional catalytic ability for low carbon alcohol fuel electro-reforming of hydrogen evolution. J. Energy Chem. 2022, 75, 46–54.

[31]

Zhou, Y.; Wang, Q. W.; Tian, X. L.; Feng, L. G. Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation. Nano Res. 2022, 15, 8936–8945.

[32]

Shi, L.; Wang, D. Q.; Song, W.; Shao, D.; Zhang, W. P.; Lu, A. H. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene. ChemCatChem 2017, 9, 1788–1793.

[33]

Bu, K. K.; Kuboon, S.; Deng, J.; Li, H. R.; Yan, T. T.; Chen, G. R.; Shi, L. Y.; Zhang, D. S. Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts. Appl. Catal. B Environ. 2019, 252, 86–97.

[34]

Dong, J. H.; Fu, Q.; Li, H. B.; Xiao, J. P.; Yang, B.; Zhang, B. S.; Bai, Y. X.; Song, T. Y.; Zhang, R. K.; Gao, L. J. et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167–17174.

[35]

Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal. 2013, 3, 1638–1651.

[36]

Chen, L. N.; Hou, K. P.; Liu, Y. S.; Qi, Z. Y.; Zheng, Q.; Lu, Y. H.; Chen, J. Y.; Chen, J. L.; Pao, C. W.; Wang, S. B. et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst. J. Am. Chem. Soc. 2019, 141, 17995–17999.

[37]

Ohashi, T.; Wang, Y. T.; Shimada, S. Preparation and high catalytic performance of hollow BN spheres-supported Ni for hydrogen production from methanol. J. Mater. Chem. 2010, 20, 5129–5135.

[38]

Tsoncheva, T.; Mavrodinova, V.; Ivanova, L.; Dimitrov, M.; Stavrev, S.; Minchev, C. Nickel modified ultrananosized diamonds and their application as catalysts in methanol decomposition. J. Mol. Catal. A Chem. 2006, 259, 223–230.

[39]

Avgouropoulos, G.; Papavasiliou, J.; Ioannides, T. Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chem. Eng. J. 2009, 154, 274–280.

[40]

Wang, K. Q.; Dou, B. L.; Jiang, B.; Zhang, Q.; Li, M.; Chen, H. S.; Xu, Y. J. Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. Int. J. Hydrogen Energy 2016, 41, 17334–17347.

[41]

Wang, G. C.; Zhou, Y. H.; Morikawa, Y.; Nakamura, J.; Cai, Z. S.; Zhao, X. Z. Kinetic mechanism of methanol decomposition on Ni(111) surface: A theoretical study. J. Phys. Chem. B 2005, 109, 12431–12442.

[42]

Kramer, Z. C.; Gu, X. K.; Zhou, D. D. Y.; Li, W. X.; Skodje, R. T. Following molecules through reactive networks: Surface catalyzed decomposition of methanol on Pd(111), Pt(111), and Ni(111). J. Phys. Chem. C 2014, 118, 12364–12383.

File
12274_2023_5515_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2022
Revised: 27 December 2022
Accepted: 18 January 2023
Published: 20 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was funded by the Shandong Province Major Scientific and Technological Innovation Project (No. 2021CXGC010803) and the National Natural Science Foundation of China (No. 21876188). M. Y. acknowledges National Research Foundation Competitive Research Programs (No. NRFCRP24-2020-0002). M. Y. acknowledges the funding support (project ID: 1-BE47, ZE0C, ZE2F, and ZE2X) from the Hong Kong Polytechnic University. We acknowledge the Centre for Advanced 2D Materials and Graphene Research at the National University of Singapore and the National Supercomputing Centre Singapore for providing computing resources. We thank H. Q. and M. Y. for their efforts in DFT computations.

Return