Journal Home > Volume 16 , Issue 7

Two-dimensional transition metal hydroxides with abundant reserves and low prices have played an indispensable role in energy catalytic applications. Recent reports indicated that the incorporation of Fe species into Co-based catalysts can synergistically enhance oxygen evolution reaction (OER) activity. Constructing a heterointerface on the surface of Co-based catalysts can provide a platform to investigate the role of heterointerface in reaction kinetics. Herein, we constructed a Fe-O-Co heterointerface without electronic effect by depositing FeOx clusters on the oxygen vacancies of CoOOH surface. FeOx/CoOOH exhibited excellent OER intrinsic activity, which can deliver the turnover frequency (TOF) of 4.56 s−1 at the overpotentials of 300 mV and the Tafel slope of 33 mV·dec−1. In-situ electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) calculations demonstrated that the synergistic effect between Fe sites and Co sites confined at the Fe-O-Co heterointerface accelerated the charge transfer during OER and optimized the adsorption of oxygen intermediates, consequently enhancing OER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confinement synergy at the heterointerface for enhanced oxygen evolution

Show Author's information Dongdi Wang1,§Shanshan Ruan1,§Peiyu Ma1Ruyang Wang1Xilan Ding1Ming Zuo2Lidong Zhang1Zhirong Zhang2( )Jie Zeng2( )Jun Bao1( )
National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

§ Dongdi Wang and Shanshan Ruan contributed equally to this work.

Abstract

Two-dimensional transition metal hydroxides with abundant reserves and low prices have played an indispensable role in energy catalytic applications. Recent reports indicated that the incorporation of Fe species into Co-based catalysts can synergistically enhance oxygen evolution reaction (OER) activity. Constructing a heterointerface on the surface of Co-based catalysts can provide a platform to investigate the role of heterointerface in reaction kinetics. Herein, we constructed a Fe-O-Co heterointerface without electronic effect by depositing FeOx clusters on the oxygen vacancies of CoOOH surface. FeOx/CoOOH exhibited excellent OER intrinsic activity, which can deliver the turnover frequency (TOF) of 4.56 s−1 at the overpotentials of 300 mV and the Tafel slope of 33 mV·dec−1. In-situ electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) calculations demonstrated that the synergistic effect between Fe sites and Co sites confined at the Fe-O-Co heterointerface accelerated the charge transfer during OER and optimized the adsorption of oxygen intermediates, consequently enhancing OER.

Keywords: oxygen evolution reaction, clusters, heterointerface, confinement synergy

References(41)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

[3]

Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

[4]

Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585–7592.

[5]

Jiang, K.; Luo, M.; Peng, M.; Yu, Y. Q.; Lu, Y. R.; Chan, T. S.; Liu, P.; de Groot, F. M. F.; Tan, Y. W. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 2020, 11, 2701.

[6]

Li, Z. J.; Wang, Z. Y.; Xi, S. B.; Zhao, X. X.; Sun, T.; Li, J.; Yu, W.; Xu, H. M.; Herng, T. S.; Hai, X. et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano. 2021, 15, 7105–7113.

[7]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

[8]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[9]

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

[10]

Li, Y. G.; Wu, Z. S.; Lu, P. F.; Wang, X.; Liu, W.; Liu, Z. B.; Ma, J. Y.; Ren, W. C.; Jiang, Z.; Bao, X. H. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 2020, 7, 1903089.

[11]

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

[12]

Hu, X. M.; Zhang, S. L.; Sun, J. W.; Yu, L.; Qian, X. Y.; Hu, R. D.; Wang, Y. N.; Zhao, H.; Zhu, J. W. 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy 2019, 56, 109–117.

[13]

Wang, Y. C.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J. W.; Wei, W.; Yang, Z. Q.; Sun, X. H.; Cai, W. B.; Zheng, G. F. Bio-inspired leaf-mimicking nanosheet/nanotube heterostructure as a highly efficient oxygen evolution catalyst. Adv. Sci. 2015, 2, 1500003.

[14]

Han, X. T.; Yu, C.; Zhou, S.; Zhao, C. T.; Huang, H. W.; Yang, J.; Liu, Z. B.; Zhao, J. J.; Qiu, J. S. Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 2017, 7, 1602148.

[15]

Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y. et al. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

[16]

Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.

[17]

Kim, B. J.; Fabbri, E.; Abbott, D. F.; Cheng, X.; Clark, A. H.; Nachtegaal, M.; Borlaf, M.; Castelli, I. E.; Graule, T.; Schmidt, T. J. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 5231–5240.

[18]

Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 2017, 8, 2022.

[19]

Liu, Y.; Ying, Y. R.; Fei, L. F.; Liu, Y.; Hu, Q. Z.; Zhang, G. G.; Pang, S. Y.; Lu, W.; Mak, C. L.; Luo, X. et al. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 2019, 141, 8136–8145.

[20]

Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S. B.; Du, Y. H.; Lou, X. W. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 2020, 32, 2002235.

[21]

Ba, K.; Pu, D. D.; Yang, X. Y.; Ye, T.; Chen, J. H.; Wang, X. R.; Xiao, T. S.; Duan, T.; Sun, Y. Y.; Ge, B. H. et al. Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. Appl. Catal. B: Environ. 2022, 317, 121755.

[22]

Yuan, L. P.; Tang, T.; Hu, J. S.; Wan, L. J. Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Acc. Mater. Res. 2021, 2, 907–919.

[23]

Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.

[24]

Nie, Q. Y.; Cai, Q. Y.; Xu, H. H.; Qiao, Z.; Li, Z. H. A facile colorimetric method for highly sensitive ascorbic acid detection by using CoOOH nanosheets. Anal. Methods 2018, 10, 2623–2628.

[25]

Liu, Y. C.; Koza, J. A.; Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction. Electrochim. Acta 2014, 140, 359–365.

[26]

Chen, Z.; Kronawitter, C. X.; Yeh, Y. W.; Yang, X. F.; Zhao, P.; Yao, N.; Koel, B. E. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J. Mater. Chem. A 2017, 5, 842–850.

[27]

Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.

[28]

Jagadale, A. D.; Dubal, D. P.; Lokhande, C. D. Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mater. Res. Bull. 2012, 47, 672–676.

[29]

Xia, X. J.; Deng, L.; Yang, L. F.; Shi, Z. Facile synthesis of CoOOH@MXene to activate peroxymonosulfate for efficient degradation of sulfamethoxazole: Performance and mechanism investigation. Environ. Sci. Pollut. Res. 2022, 29, 52995–53008.

[30]

Yan, W. X.; Shen, Y. L.; An, C.; Li, L. N.; Si, R.; An, C. H. FeOx clusters decorated hcp Ni nanosheets as inverse electrocatalyst to stimulate excellent oxygen evolution performance. Appl. Catal. B:Environ. 2021, 284, 119687.

[31]

Zhao, W. S.; Shi, Y. N.; Jiang, Y. H.; Zhang, X. F.; Long, C.; An, P. F.; Zhu, Y. F.; Shao, S. X.; Yan, Z.; Li, G. D. et al. Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation. Angew. Chem., Int. Ed. 2021, 60, 5811–5815.

[32]

Xie, C.; Zhang, X.; Matras-Postolek, K.; Yang, P. Hierarchical FeCo/C@Ni(OH)2 heterostructures for enhanced oxygen evolution activity. Electrochim. Acta 2021, 395, 139194.

[33]

Zhang, Z. R.; Feng, C.; Wang, D. D.; Zhou, S. M.; Wang, R. Y.; Hu, S. P.; Li, H. L.; Zuo, M.; Kong, Y.; Bao, J. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 2022, 13, 2473.

[34]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[35]

Wang, L. M.; Zhang, L. L.; Ma, W.; Wan, H.; Zhang, X. J.; Zhang, X.; Jiang, S. Y.; Zheng, J. Y.; Zhou, Z. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1−x(OH)2 to regulate the electronic structure for overall water splitting. Adv. Funct. Mater. 2022, 32, 2203342.

[36]

Lu, Y. H.; Wang, W.; Xie, F. Investigation of oxygen evolution reaction kinetic process and kinetic parameters on iridium electrode by electrochemistry impedance spectroscopy analysis. J. Electroanal. Chem. 2020, 871, 114281.

[37]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, e2107185.

[38]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[39]

Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.

[40]

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N-N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

[41]

Wan, W. C.; Zhao, Y. G.; Wei, S. Q.; Triana, C. A.; Li, J. G.; Arcifa, A.; Allen, C. S.; Cao, R.; Patzke, G. R. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 2021, 12, 5589.

File
12274_2023_5514_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 October 2022
Revised: 24 December 2022
Accepted: 18 January 2023
Published: 30 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0403402, 2019YFA0405600, 2019YFA0405602, and 2021YFA1500500), National Natural Science Foundation of China (NSFC, Nos. 21972132, 21673214, 22202192, U19A2015, 92045301, U1732149, and U1732272), National Science Fund for Distinguished Young Scholars (No. 21925204), Fundamental Research Funds for the Central Universities (No. 20720220010), Provincial Key Research and Development Program of Anhui (No. 202004a05020074), K. C. Wong Education (No. GJTD-2020-15), the DNL Cooperation Fund, Chinese Academy of Sciences (CAS, No. DNL202003), Users with Excellence Program of Hefei Science Center CAS (No. 2020HSC-UE001), USTC Research Funds of the Double First-Class Initiative (No. YD2340002002), Anhui Natural Science Foundation for Young Scholars (Nos. 2208085QB52 and 2208085QB41), and CAS Project for Young Scientists in Basic Research (No. YSBR-051).

Return