AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules

Meixi Zhang1,§Laisen Wang2,§Susu Bao1Zhijia Song1Wenjiao Chen1Zhiyuan Jiang1( )Zhaoxiong Xie1Lansun Zheng1
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Materials, Xiamen University, Xiamen 361005, China

§ Meixi Zhang and Laisen Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A finite oxidation strategy has been developed to enhance the interface polarization loss and magnetic loss of yolk–shell structured (Fe/FeOx)@C composites, and the optimized sample shows a greatly increased effective absorption bandwidth of 7.3 GHz with a 2 mm thickness.

Abstract

Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability. However, the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation. Although many efforts have been developed to avoid their oxidation, whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned. In order to explore the effect of partial surface oxidation of iron on its properties, the designed yolk–shelled (Fe/FeOx)@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe2O3 ellipsoids. The performance enhancement mechanisms of Fe/FeOx heterointerfaces were also elaborated. It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss, but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability. Meanwhile, the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves. Compared to Fe@C composite, the effective absorption (reflection loss (RL) < −10 dB) bandwidth of the optimized (Fe/FeOx)@C-2 increases from 5.7 to 7.3 GHz (10.7–18.0 GHz) at a same matching thickness of 2 mm, which can completely cover Ku-band. This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5511_MOESM1_ESM.pdf (3 MB)

References

[1]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W, Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[2]

Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.

[3]

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

[4]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[5]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[6]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[7]

Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

[8]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X, J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[9]

Li, X. A.; Du, D. X.; Wang, C. S.; Wang, H. Y.; Xu, Z. P. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption. J. Mater. Chem. C 2018, 6, 558–567.

[10]

Zhou, X. D.; Han, H.; Wang, Y. C.; Zhang, C.; Lv, H. L.; Lou, Z. C. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 121, 199–206.

[11]

Qing, Y. C.; Zhou, W. C.; Jia, S.; Luo, F.; Zhu, D. M. Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance. Phys. B Condens. Matter 2011, 406, 777–780.

[12]

Liu, G.; Wang, L. Y.; Yang, Z. H.; Wu, R. B. Synthesis of iron-based hexagonal microflakes for strong microwave attenuation. J. Alloys Compd. 2017, 718, 46–52.

[13]

Javid, M.; Zhou, Y. L.; Zhou, T. H.; Wang, D. X.; Zhou, L.; Shah, A.; Duan, Y. P.; Dong, X. L.; Zhang, Z. D. In-situ fabrication of Fe@ZrO2 nanochains for the heat-resistant electromagnetic wave absorber. Mater. Lett. 2019, 242, 199–202.

[14]

Duan, W. J.; Li, X. D.; Wang, Y.; Qiang, R.; Tian, C. H.; Wang, N.; Han, X. J.; Du, Y. C. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Appl. Surf. Sci. 2018, 427, 594–602.

[15]

Wang, Y. C.; Wang, W. L.; Sun, J.; Sun, C. G.; Feng, Y. K.; Li, Z. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon 2018, 135, 1–11.

[16]

Manna, P. K.; Yusuf, S. M. Two interface effects: Exchange bias and magnetic proximity. Phys. Rep. 2014, 535, 61–99.

[17]

Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J. S.; Baró, M. D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117.

[18]

Li, X. A.; Qu, X. Y.; Xu, Z.; Dong, W. Q.; Wang, F. Y.; Guo, W. C.; Wang, H. Y.; Du, Y. C. Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 2019, 11, 19267–19276.

[19]

Chen, F.; Luo, H.; Cheng, Y. Z.; Liu, J. L.; Wang, X.; Gong, R. Z. Fe/Fe3O4@N-doped carbon hexagonal plates decorated with Ag nanoparticles for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 7266–7278.

[20]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[21]

Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloys Compd. 2013, 561, 65–70.

[22]

Wang, X. L.; Geng, Q. Y.; Shi, G. M.; Xu, G.; Yu, J.; Guan, Y. Y.; Zhang, Y. J.; Li, D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption. J. Alloys Compd. 2019, 803, 818–825.

[23]

Xu, C. Y.; Liu, P. B.; Wu, Z. C.; Zhang, H. B.; Zhang, R. X.; Zhang, C.; Wang, L.; Wang, L. Y.; Yang, B. T.; Yang, Z. Q. et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 2022, 9, 2200804.

[24]

Sun, D. P.; Zou, Q.; Wang, Y. P.; Wang, Y. J.; Jiang, W.; Li, F. S. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 2014, 6, 6557–6562.

[25]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[26]

Chen, N.; Dong, Z.; Wang, X. Y.; Guan, Z. J.; Jiang, J. T.; Wang, K. J. Construction of FeNi3 and core–shell structured FeNi3@C microspheres toward broadband electromagnetic wave absorbing. Appl. Surf. Sci. 2022, 603, 154337.

[27]

Mao, R. J.; Bao, S. S.; Li, Q. S.; Yuan, Y. S.; Liang, Z. H.; Zhang, M. X.; Jiang, Z. Y.; Xie, Z. X. Rational design of two-dimensional flaky Fe/void/C composites for enhanced microwave absorption properties. Dalton Trans. 2022, 51, 8705–8713.

[28]

Bao, S. S.; Song, Z. J.; Mao, R. J.; Li, Y.; Zhang, S. H.; Jiang, Z. Y.; Li, X. A.; Xie, Z. X. Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 2021, 9, 13860–13868.

[29]

Dong, W. Q.; Li, X. A.; Tang, H. M.; Shi, K.; Wang, C. S.; Guo, W. C.; Tian, K. S.; Wang, H. Y. Electromagnetic attenuation distribution in a three-dimensional amorphous carbon matrix with highly dispersed Fe/Fe3C@graphite-C nanoparticles. Mater. Des. 2022, 216, 110528.

[30]

Liu, Y.; Li, Y. N.; Jiang, K. D.; Tong, G. X.; Lv, T. X.; Wu, W. H. Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption. J. Mater. Chem. C 2016, 4, 7316–7323.

[31]

Zhou, T. D.; Zhou, P. H.; Liang, D. F.; Deng, L. J. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching. J. Alloys Compd. 2009, 484, 545–549.

[32]

Liu, X.; Qiao, L.; Li, F. S. Microwave properties in relation to magnetic anisotropy of the Nd(Fe1−xCox)10V2 system. J. Phys. D: Appl. Phys. 2010, 43, 165004.

[33]

Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

[34]

Liu, L.; He, Z. D.; Zhao, Y. T.; Sun, J. C.; Tong, G. X. Modulation of the composition and surface morphology of expanded graphite/Fe/Fe3O4 composites for plasmon resonance-enhanced microwave absorption. J. Alloys Compd. 2018, 765, 1218–1227.

[35]

Liu, Y.; Fu, Y. W.; Liu, L.; Li, W.; Guan, J. G.; Tong, G. X. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 2018, 10, 16511–16520.

[36]

Park, J. H.; Lee, S.; Chul Ro, J.; Suh, S. J. Yolk–shell Fe-Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. Appl. Surf. Sci. 2022, 573, 151469.

[37]

Guan, Z. J.; Jiang, J. T.; Yan, S. J.; Sun, Y. M.; Zhen, L. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect. J. Colloid Interface Sci. 2020, 561, 687–695.

[38]

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4, nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

[39]

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

[40]

Wang, H.; Guo, H. H.; Dai, Y. Y.; Geng, D. Y.; Han, Z.; Li, D.; Yang, T.; Ma, S.; Liu, W.; Zhang, Z. D. Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 2012, 101, 083116.

[41]

Zhang, Z. Y.; Liu, X. X.; Wang, X. J.; Wu, Y. P.; Liu, Y. Electromagnetic and microwave absorption properties of Fe-Sr0.8La0.2Fe11.8Co0.2O19 shell–core composites. J. Magn. Magn. Mater. 2012, 324, 2177–2182.

[42]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-Doped porous carbon composites for frequency-selective microwave absorption. Compos. B Eng. 2020, 202, 108406.

[43]

Zhu, X. J.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Liu, Z. C.; Deng, B. W.; Zhang, X.; Shi, Z.; Lu, W. Covalent organic framework-derived hollow core–shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 2021, 25, 100731.

[44]

Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.

[45]

Li, X. A.; Dong, W. Q.; Zhang, C.; Guo, W. C.; Wang, C. S.; Li, Y. M.; Wang, H. Y. Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106202.

[46]

Li, X. P.; Deng, Z. M.; Li, Y.; Zhang, H. B.; Zhao, S.; Zhang, Y.; Wu, X. Y.; Yu, Z. Z. Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon 2019, 147, 172–181.

[47]

Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

[48]

Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

[49]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2691.

[50]

Han, Z.; Li, D.; Wang, H.; Liu, X. G.; Li, J.; Geng, D. Y.; Zhang, Z. D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett. 2009, 95, 023114.

[51]

Bao, S. S.; Tang, W.; Song, Z. J.; Jiang, Q. R.; Jiang, Z. Y.; Xie, Z. X. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 2020, 12, 18790–18799.

[52]

Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk–shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

[53]

Li, J.; Wang, L.; Zhang, D.; Qu, Y.; Wang, G. M.; Tian, G.; Liu, A. H.; Yue, H. J.; Feng, S. H. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front. 2017, 1, 1786–1794.

[54]

Wang, J. Y.; Wang, Z. H.; Liu, R. G.; Li, Y. X.; Zhao, X. N.; Zhang, X. F. Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption. Mater. Lett. 2017, 209, 276–279.

[55]

Feng, A. L.; Jia, Z. R.; Zhao, Y.; Lv, H. L. Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance. J. Alloys Compd. 2018, 745, 547–554.

[56]

Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

[57]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[58]

Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

[59]

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540–10547.

[60]

You, W. B.; Che, R. C. Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic–ferromagnetic interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111.

[61]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

[62]

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

[63]

Yao, L. H.; Cao, W. Q.; Zhao, J. G.; Zheng, Q.; Wang, Y. C.; Jiang, S.; Pan, Q. L.; Song, J.; Zhu, Y. Q.; Cao, M. S. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 2022, 127, 48–60.

[64]

Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

Nano Research
Pages 11084-11095
Cite this article:
Zhang M, Wang L, Bao S, et al. A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules. Nano Research, 2023, 16(8): 11084-11095. https://doi.org/10.1007/s12274-023-5511-7
Topics:

767

Views

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 09 December 2022
Revised: 10 January 2023
Accepted: 16 January 2023
Published: 02 March 2023
© Tsinghua University Press 2023
Return