AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photonic crystals constructed by isostructural metal-organic framework films

Zhihuan Li1Jianxi Liu1( )Haoze Wu1Jiao Tang2Zhongyang Li2Yadong Xu1Feng Zhou3Weimin Liu1,3
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Electronic Information School, Wuhan University, Wuhan 430072, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Show Author Information

Graphical Abstract

Isostructural metal-organic frameworks (MOFs)-based photonic crystals (PCs) are constructed by sequential spraying coating low refractive index (RI) layer of MOF and high RI layer of MOFs@nanoparticles. We demonstrated high detection sensitivity for chemical sensing on the PCs, which could be advanced by encapsulating different types of nanomaterials and designing wide-range color isostructural MOFs-based PCs.

Abstract

Metal-organic framework (MOF)-on-MOF structure allows stacking various types of MOFs with different lattice constants for molecule sieving or filtering. However, the multilayered MOFs-based optical devices have incoherent interference due to the lattice-mismatch at the interface and refractive index (RI) indifference. This paper reports isostructural MOFs-based photonic crystals (PCs) designed by stacking Bragg bilayers of lattice-matched MOFs thin films through a layer-by-layer assembly method. Colloidal nanoparticles (NPs) were homogenously encapsulated in some layers of the MOFs (HKUST-1@NPs) to tune their intrinsic RI during the spraying coating process. The isostructural MOFs-based PCs were constructed on a large scale by sequentially spraying coating the low RI layer of HKUST-1 and high RI layer of HKUST-1@NPs to form the desired number of Bragg bilayers. X-ray photoelectron spectroscopy (XPS) depth profiling proved the Bragg bilayers and the homogenous encapsulation of nanomaterials in certain layers of MOFs. Bandwidth of the PCs was tailored by the thickness and RI of the Bragg bilayers, which had a great consistent with finite difference time domain (FDTD) simulation. Importantly, reflectivity of the isostructural MOFs-based PCs was up to 96%. We demonstrated high detection sensitivity for chemical sensing on the PCs, which could be advanced by encapsulating different types of nanomaterials and designing wide-band isostructural MOFs-based PCs.

Electronic Supplementary Material

Download File(s)
12274_2023_5505_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Goodling, A. E.; Nagelberg, S.; Kaehr, B.; Meredith, C. H.; Cheon, S. I.; Saunders, A. P.; Kolle, M.; Zarzar, L. D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523–527.

[2]

Datta, B.; Spero, E. F.; Martin-Martinez, F. J.; Ortiz, C. Socially-directed development of materials for structural color. Adv. Mater. 2022, 34, 2100939.

[3]

Wang, Z. J.; Dai, C. J.; Zhang, J.; Wang, D. D.; Shi, Y. Y.; Wang, X. Y.; Zheng, G. X.; Zhang, X. F.; Li, Z. Y. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv. Funct. Mater. 2022, 32, 2110022.

[4]

Dai, C. J.; Wan, C. W.; Li, Z. J.; Wang, Z.; Yang, R.; Zheng, G. X.; Li, Z. Y. Stepwise dual-Fabry–Pérot nanocavity for grayscale imaging encryption/concealment with holographic multiplexing. Adv. Opt. Mater. 2021, 9, 2100950.

[5]

Dedelaite, L.; Rodriguez, R. D.; Schreiber, B.; Ramanavicius, A.; Zahn, D. R. T.; Sheremet, E. Multiwavelength optical sensor based on a gradient photonic crystal with a hexagonal plasmonic array. Sens. Actuat. B Chem. 2020, 311, 127837.

[6]

Wu, S. L.; Xia, H. B.; Xu, J. H.; Sun, X. Q.; Liu, X. G. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362.

[7]

Li, M. M.; Lyu, Q.; Peng, B. L.; Chen, X. D.; Zhang, L. B.; Zhu, J. T. Bioinspired colloidal photonic composites: Fabrications and emerging applications. Adv. Mater. 2022, 2110488.

[8]

Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.

[9]

Periasamy, P.; Guthrey, H. L.; Abdulagatov, A. I.; Ndione, P. F.; Berry, J. J.; Ginley, D. S.; George, S. M.; Parilla, P. A.; O'Hayre, R. P. Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance. Adv. Mater. 2013, 25, 1301–1308.

[10]

Hu, W. W.; Wu, W. W.; Jian, Y. Y.; Haick, H.; Zhang, G. J.; Qian, Y.; Yuan, M. M.; Yao, M. S. Volatolomics in healthcare and its advanced detection technology. Nano Res. 2022, 15, 8185–8213.

[11]

Lova, P.; Manfredi, G.; Comoretto, D. Advances in functional solution processed planar 1D photonic crystals. Adv. Opt. Mater. 2018, 6, 1800730.

[12]

Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

[13]

Wang, K. C.; Li, Y. P.; Xie, L. H.; Li, X. Y.; Li, J. R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441.

[14]

Zhuang, Z. Y.; Liu, D. X. Conductive MOFs with photophysical properties: Applications and thin-film fabrication. Nano-Micro Lett. 2020, 12, 132.

[15]

Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.

[16]

DeCoster, M. E.; Babaei, H.; Jung, S. S.; Hassan, Z. M.; Gaskins, J. T.; Giri, A.; Tiernan, E. M.; Tomko, J. A.; Baumgart, H.; Norris, P. M. et al. Hybridization from guest–host interactions reduces the thermal conductivity of metal-organic frameworks. J. Am. Chem. Soc. 2022, 144, 3603–3613.

[17]

Burtch, N. C.; Heinen, J.; Bennett, T. D.; Dubbeldam, D.; Allendorf, M. D. Mechanical properties in metal-organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 2018, 30, 1704124.

[18]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[19]

Li, D. J.; Li, Q. H.; Wang, Z. R.; Ma, Z. Z.; Gu, Z. G.; Zhang, J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting. J. Am. Chem. Soc. 2021, 143, 17162–17169.

[20]

Ma, Z. Z.; Li, Q. H.; Wang, Z. R.; Gu, Z. G.; Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 2022, 13, 6347.

[21]

Li, Z. H.; Liu, J. X.; Feng, L.; Liu, X.; Xu, Y. D.; Zhou, F.; Liu, W. M. Coupling tandem MOFs in metal-insulator-metal resonator advanced chemo-sieving sensing. Nano Today 2023, 48, 101726.

[22]
Li, Z. H.; Liu, J. X.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G. H.; Li, Z. Y.; Shi, J. Q.; Xu, Y. D. et al. Monolithic MOF-based metal-insulator-metal resonator for filtering and sensing. Nano Lett., in press,https://doi.org/10.1021/acs.nanolett.2c04428.
[23]

Liu, J. X.; Redel, E.; Walheim, S.; Wang, Z. B.; Oberst, V.; Liu, J. X.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T. et al. Monolithic high performance surface anchored metal-organic framework bragg reflector for optical sensing. Chem. Mater. 2015, 27, 1991–1996.

[24]

Jian, Y. Y.; Hu, W. W.; Zhao, Z. H.; Cheng, P. F.; Haick, H.; Yao, M. S.; Wu, W. W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020, 12, 71.

[25]

Kou, D. H.; Ma, W.; Zhang, S. F.; Li, R.; Zhang, Y. BTEX vapor detection with a flexible MOF and functional polymer by means of a composite photonic crystal. ACS Appl. Mater. Interfaces 2020, 12, 11955–11964.

[26]

Kim, J. Y.; Lee, S. H.; Do, Y. S. Optimized structure for a moisture-sensitive colorimetric sensor utilizing photonic crystals based on a metal-organic framework. IEEE Access 2019, 7, 85483–85491.

[27]

Deng, Y. F.; Sun, J. X.; Jin, H.; Khatib, M.; Li, X. H.; Wei, Z. S.; Wang, F.; Horev, Y. D.; Wu, W. W.; Haick, H. Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending. Adv. Healthcare Mater. 2018, 7, 1800232.

[28]

Wang, Z. B.; Liu, J. X.; Lukose, B.; Gu, Z. G.; Weidler, P. G.; Gliemann, H.; Heine, T.; Wöll, C. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks. Nano Lett. 2014, 14, 1526–1529.

[29]

Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

[30]

Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

[31]

Huang, L. Y.; Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 2013, 88, 165203.

[32]

Jiang, B.; Yuan, Y. F.; Wang, W.; He, K.; Zou, C.; Chen, W.; Yang, Y.; Wang, S.; Yurkiv, V.; Lu, J. Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat. Commun. 2021, 12, 5661.

[33]

Zhang, J. Q.; Yang, J.; Dai, R. Y.; Sheng, W. P.; Su, Y.; Zhong, Y.; Li, X.; Tan, L. C.; Chen, Y. W. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103674.

[34]

Li, J.; Xue, L. J.; Wang, Z.; Han, Y. C. Colloidal photonic crystals with a graded lattice-constant distribution. Colloid Polym. Sci. 2007, 285, 1037–1041.

[35]

Su, A. Effect of lattice constants on transmission spectra of photonic crystal quantum well. Infrared Laser Eng. 2013, 42, 200–205.

[36]

Luo, W.; Yan, J. D.; Tan, Y. L.; Ma, H. R.; Guan, J. G. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 2017, 9, 9548–9555.

[37]

Liu, J. X.; Wang, W. J.; Wang, D. Q.; Hu, J. T.; Ding, W. D.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proc. Natl. Acad. Sci. USA 2019, 116, 5925–5930.

[38]

Chen, D. H.; Haldar, R.; Neumeier, B. L.; Fu, Z. H.; Feldmann, C.; Wöll, C.; Redel, E. Tunable emission in heteroepitaxial Ln-SURMOFs. Adv. Funct. Mater. 2019, 29, 1903086.

[39]

Li, Z. H.; Liu, J. X.; Yi, X. B.; Wu, W.; Li, F. F.; Zhu, Z. K.; Li, H. Q.; Shi, J. Q.; Xu, Y. D.; Zhou, F. et al. Metal-organic frameworks-based Fabry–Pérot cavity encapsulated TiO2 nanoparticles for selective chemical sensing. Adv. Funct. Mater. 2022, 32, 2109541.

[40]

Ma, S.; Ahn, J.; Oh, Y.; Kwon, H. C.; Lee, E.; Kim, K.; Yun, S. C.; Moon, J. Facile sol-gel-derived craterlike dual-functioning TiO2 electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 14649–14658.

[41]

Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

[42]

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

[43]

Lin, Y. H.; Wang, D. Q.; Hu, J. T.; Liu, J. X.; Wang, W. J.; Guan, J.; Schaller, R. D.; Odom, T. W. Engineering symmetry-breaking nanocrescent arrays for nanolasing. Adv. Funct. Mater. 2019, 29, 1904157.

[44]

Von Mankowski, A.; Szendrei-Temesi, K.; Koschnick, C.; Lotsch, B. V. Improving analyte selectivity by post-assembly modification of metal-organic framework based photonic crystal sensors. Nanoscale Horiz. 2018, 3, 383–390.

[45]

Szendrei-Temesi, K.; Jiménez-Solano, A.; Lotsch, B. V. Tracking molecular diffusion in one-dimensional photonic crystals. Adv. Mater. 2018, 30, 1803730.

[46]

Xing, Y. Z.; Shi, L. X.; Yan, J.; Chen, Y. L. High-performance methanal sensor based on metal-organic framework based one-dimensional photonic crystal. ChemistrySelect 2020, 5, 3946–3952.

[47]

Zhang, Z. J.; Müller, K.; Heidrich, S.; Koenig, M.; Hashem, T.; Schlöder, T.; Bléger, D.; Wenzel, W.; Heinke, L. Light-switchable one-dimensional photonic crystals based on MOFs with photomodulatable refractive index. J. Phys. Chem. Lett. 2019, 10, 6626–6633.

[48]

Gilbert, J. B.; Luo, M.; Shelton, C. K.; Rubner, M. F.; Cohen, R. E.; Epps III, T. H. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 2015, 9, 512–520.

[49]

Zhou, H.; Hui, X. D.; Li, D. X.; Hu, D. L.; Chen, X.; He, X. M.; Gao, L. X.; Huang, H.; Lee, C. K.; Mu, X. J. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. (Weinh.) 2020, 7, 2001173.

[50]

Song, D. P.; Li, C.; Li, W. H.; Watkins, J. J. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS Nano 2016, 10, 1216–1223.

[51]

Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.

Nano Research
Pages 9569-9576
Cite this article:
Li Z, Liu J, Wu H, et al. Photonic crystals constructed by isostructural metal-organic framework films. Nano Research, 2023, 16(7): 9569-9576. https://doi.org/10.1007/s12274-023-5505-5
Topics:

1613

Views

13

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 25 November 2022
Revised: 04 January 2023
Accepted: 08 January 2023
Published: 28 March 2023
© Tsinghua University Press 2023
Return