Journal Home > Volume 16 , Issue 7

Carbon nitride (CN) has attracted intensive attention as a visible light photocatalyst, but the rapid recombination of photogenerated charge carriers limits its photocatalytic activity. Herein, we develop a new strategy to construct both homojunction and ohmic junction into CN via selectively introducing metallized CN (MCN), which leads to rapid separation and transfer of photogenerated charge carriers. The polymerization of urea in the presence of KOH creates CN homojunction with amino and cyano groups. The subsequent molten salt treatment induces a new type of cyano-terminated CN that can be converted to MCN through photodoping, forming homojunction and ohmic contact coexisting CN (HOCN). The formed HOCN photocatalyst exhibits a high photocatalytic H2 evolution rate of 18.5 mmol·g−1·h−1 under visible light irradiation, 45-fold higher than that of bulk CN. This strategy provides a new idea for designing ohmic contact between semiconductor and metal, and realizing efficient photocatalysis by improving charge separation and transfer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution

Show Author's information Xiao Fang1Lu Chen1Hongrui Cheng2Xiaoqiong Bian1Wenhao Sun1,4Kaining Ding1Xinghe Xia1Xin Chen1( )Jiefang Zhu4,5( )Yuanhui Zheng1,2,3( )
College of Chemistry, Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou 350116, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, China
College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
Department of Chemistry − Ångström Laboratory, Uppsala University, Uppsala SE-751 21, Sweden
The Key Laboratory for Ultrafine Materials of The Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

Abstract

Carbon nitride (CN) has attracted intensive attention as a visible light photocatalyst, but the rapid recombination of photogenerated charge carriers limits its photocatalytic activity. Herein, we develop a new strategy to construct both homojunction and ohmic junction into CN via selectively introducing metallized CN (MCN), which leads to rapid separation and transfer of photogenerated charge carriers. The polymerization of urea in the presence of KOH creates CN homojunction with amino and cyano groups. The subsequent molten salt treatment induces a new type of cyano-terminated CN that can be converted to MCN through photodoping, forming homojunction and ohmic contact coexisting CN (HOCN). The formed HOCN photocatalyst exhibits a high photocatalytic H2 evolution rate of 18.5 mmol·g−1·h−1 under visible light irradiation, 45-fold higher than that of bulk CN. This strategy provides a new idea for designing ohmic contact between semiconductor and metal, and realizing efficient photocatalysis by improving charge separation and transfer.

Keywords: carbon nitride, photocatalysis, hydrogen evolution, ohmic contact, homojunction

References(59)

[1]

Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2020, 6, 168–190.

[2]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[3]

Wang, Y. O.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746–760.

[4]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[5]

Zhang, G. G.; Lan, Z. A.; Wang, X. C. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 15712–15727.

[6]

Niu, P.; Yin, L. C.; Yang, Y. Q.; Liu, G.; Cheng, H. M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 2014, 26, 8046–8052.

[7]

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

[8]

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 2015, 27, 4572–4577.

[9]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[10]

Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Mater. Funct. 2016, 26, 6822–6829.

[11]

Wang, Y.; Du, P. P.; Pan, H. Z.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y. W.; Tang, N. J.; Liu, G. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 2019, 31, 1807540.

[12]

Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139.

[13]

Sun, W. H.; Cheng, H. R.; Lin, N. X.; Lu, Y. F.; Chen, L.; Zhao, Y.; Francis, P. S.; Zhuang, N. F.; Zheng, Y. H. Double-side solar hydrogen evolution nanopaper. Appl. Catal. B Environ. 2020, 260, 118083.

[14]

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

[15]

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

[16]

Ou, H. J.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

[17]

Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.

[18]

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

[19]

Zhang, J. S.; Chen, X. F.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem., Int. Ed. 2010, 49, 441–444.

[20]

Zhang, J. S.; Zhang, G. G.; Chen, X. F.; Lin, S.; Möhlmann, L.; Dołęga, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. C. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed. 2012, 51, 3183–3187.

[21]

Zhang, G. G.; Lin, L. H.; Li, G. S.; Zhang, Y. F.; Savateev, A.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water”. Angew. Chem., Int. Ed. 2018, 57, 9372–9376.

[22]

Zhao, Y.; Lu, Y. F.; Chen, L.; Wei, X. F.; Zhu, J. F.; Zheng, Y. H. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production. ACS Appl. Mater. Interfaces 2020, 12, 46073–46083.

[23]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[24]

Lu, Y. F.; Wang, W. S.; Cheng, H. R.; Qiu, H. J.; Sun, W.; Fang, X.; Zhu, J. F.; Zheng, Y. H. Bamboo-charcoal-loaded graphitic carbon nitride for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 3733–3740.

[25]

Sun, W. H.; Zhu, J. F.; Zheng, Y. H. Graphitic carbon nitride heterojunction photocatalysts for solar hydrogen production. Int. J. Hydrogen Energy 2021, 46, 37242–37267.

[26]

Yang, C.; Wan, S. J.; Zhu, B. C.; Yu, J. G.; Cao, S. W. Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water. Angew. Chem., Int. Ed. 2022, 134, e202208438.

[27]

Wan, S. J.; Xu, J. S.; Cao, S. W.; Yu, J. G. Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip. Mater. 2022, 1, 294–308.

[28]

Zhang, Q. H.; Xia, Y.; Cao, S. W. “Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air–liquid–solid joint interfaces. Chin. J. Catal. 2021, 42, 1667–1676.

[29]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[30]

Ou, H. H.; Chen, X. R.; Lin, L. H.; Fang, Y. X.; Wang, X. C. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew. Chem., Int. Ed. 2018, 57, 8729–8733.

[31]

Lin, L. H.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.

[32]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 6164–6175.

[33]

Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. -Eur. J. 2008, 14, 8177–8182.

[34]

Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 2435–2439.

[35]

Zhang, G. G.; Li, G. S.; Lan, Z. A.; Lin, L. H.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem., Int. Ed. 2017, 56, 13445–13449.

[36]

Zhang, G. G.; Li, G. S.; Heil, T.; Zafeiratos, S.; Lai, F. L.; Savateev, A.; Antonietti, M.; Wang, X. C. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 3433–3437.

[37]

Zhang, G. G.; Liu, M. H.; Heil, T.; Zafeiratos, S.; Savateev, A.; Antonietti, M.; Wang, X. C. Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angew. Chem., Int. Ed. 2019, 58, 14950–14954.

[38]

Chen, L.; Zhu, D. Y.; Li, J. T.; Wang, X. X.; Zhu, J. F.; Francis, P. S.; Zheng, Y. H. Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 273, 119050.

[39]

Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

[40]

Lau, V. W. H.; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M. C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Dark photocatalysis: Storage of solar energy in carbon nitride for time-delayed hydrogen generation. Angew. Chem. 2017, 129, 525–529.

[41]

Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

[42]

Schlomberg, H.; Kröger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. et al. Structural insights into poly(heptazine imides): A light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 2019, 31, 7478–7486.

[43]

Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L. et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: Melamine functionalized poly(heptazine imide). Adv. Energy Mater. 2021, 11, 2003016.

[44]

Savateev, A.; Kurpil, B.; Mishchenko, A.; Zhang, G. G.; Antonietti, M. A “waiting” carbon nitride radical anion: A charge storage material and key intermediate in direct C-H thiolation of methylarenes using elemental sulfur as the “S”-source. Chem. Sci. 2018, 9, 3584–3591.

[45]

Xu, Y. S.; He, X.; Zhong, H.; Singh, D. J.; Zhang, L. J.; Wang, R. H. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 246, 349–355.

[46]

Han, D.; Yang, H.; Zhou, Z. X.; Wu, K. Q.; Ma, J.; Fang, Y. F.; Hong, Q.; Xi, G. C.; Liu, S. Q.; Shen, Y. F. et al. Photoelectron storages in functionalized carbon nitrides for colorimetric sensing of oxygen. ACS Sens. 2022, 7, 2328–2337.

[47]

Lau, V. W. H.; Lotsch, B. V. A tour-guide through carbon nitride-land: Structure- and dimensionality-dependent properties for photo (electro) chemical energy conversion and storage. Adv. Energy Mater. 2022, 12, 2101078.

[48]

Fang, X.; Lu, Y. F.; Chen, X.; Cheng, H. R.; Qiu, H. J.; Zheng, Y. H.; Zhu, J. F. Carbon nitride nanosheet-based photochromic physical unclonable functions for anticounterfeiting applications. ACS Appl. Nano Mater. 2022, 5, 14722–14732.

[49]

Cheng, H. R.; Sun, W. H.; Lu, Y. F.; Li, H. H.; Su, W. Y.; Zhang, J.; Guo, T. L.; Li, F. S.; Francis, P. S.; Zheng, Y. H. Hot electrons in carbon nitride with ultralong lifetime and their application in reversible dynamic color displays. Cell Rep. Phys. Sci. 2021, 2, 100516.

[50]

Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

[51]

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

[52]

Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem 2014, 7, 2654–2658.

[53]

Capitan, M. J.; Álvarez, J.; Navio, C. Study of the electronic structure of electron accepting cyano-films: TCNQ versus TCNE. Phys. Chem. Chem. Phys. 2018, 20, 10450–10459.

[54]

Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K. et al. C3N5: A low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 2019, 141, 5415–5436.

[55]

Li, C. Z.; Liu, J. L.; Li, H.; Wu, K. F.; Wang, J. H.; Yang, Q. H. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2357.

[56]

Zeng, Z. X.; Quan, X.; Yu, H. T.; Chen, S.; Zhang, Y. B.; Zhao, H. M.; Zhang, S. S. Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Appl. Catal. B Environ. 2018, 236, 99–106.

[57]

Lin, L. H.; Ren, W.; Wang, C.; Asiri, A. M.; Zhang, J.; Wang, X. C. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 231, 234–241.

[58]

Byun, K. E.; Chung, H. J.; Lee, J.; Yang, H.; Song, H. J.; Heo, J.; Seo, D. H.; Park, S.; Hwang, S. W.; Yoo, I. et al. Graphene for true ohmic contact at metal–semiconductor junctions. Nano Lett. 2013, 13, 4001–4005.

[59]

Zhao, L. M.; Li, H.; Meng, J. P.; Wang, A. C.; Tan, P. C.; Zou, Y.; Yuan, Z. Q.; Lu, J. F.; Pan, C. F.; Fan, Y. B. et al. Reversible conversion between Schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. 2020, 30, 1907999.

File
12274_2023_5504_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2022
Revised: 10 January 2023
Accepted: 13 January 2023
Published: 17 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the Recruitment Program of Global Experts, the National Natural Science Foundation of China (Nos. 62175033 and 61775040), the Hundred-Talent Project of Fujian, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information (No. 2021ZZ126), Stiftelsen Olle Engkvist Byggmastare (No. SOEB-2015/167), Swedish Energy Agency (No. 46641-1), and The Key Laboratory for Ultrafine Materials of The Ministry of Education at East China University of Science and Technology for the financial support.

Return