Journal Home > Volume 16 , Issue 7

Hydrogen energy, a new type of clean and efficient energy, has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy. Recently, hydrogen production from water splitting has seen considerable advancements owing to its advantages such as zero carbon emissions, safety, and high product purity. To overcome the large energy barrier and high cost of water splitting, numerous efficient electrocatalysts have been designed and reported. However, various difficulties in promoting the industrialization of electrocatalytic water splitting remain. Further, as high-performance electrocatalysts that satisfy industrial requirements are urgently needed, a better understanding of water-splitting systems is required. In this paper, the latest progress in water electrolysis is reviewed, and experimental evidence from in situ/operando spectroscopic surveys and computational analyses is summarized to present a mechanistic understanding of hydrogen and oxygen evolution reactions. Furthermore, some promising strategies, including alloying, morphological engineering, interface construction, defect engineering, and strain engineering for designing and synthesizing electrocatalysts are highlighted. We believe that this review will provide a knowledge-guided design in fundamental science and further inspire technical engineering developments for constructing efficient electrocatalysts for water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrocatalytic water splitting: Mechanism and electrocatalyst design

Show Author's information Han Wu,§Qiaoxian Huang,§Yuanyuan ShiJiangwei Chang( )Siyu Lu( )
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Han Wu and Qiaoxian Huang contributed equally to this work.

Abstract

Hydrogen energy, a new type of clean and efficient energy, has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy. Recently, hydrogen production from water splitting has seen considerable advancements owing to its advantages such as zero carbon emissions, safety, and high product purity. To overcome the large energy barrier and high cost of water splitting, numerous efficient electrocatalysts have been designed and reported. However, various difficulties in promoting the industrialization of electrocatalytic water splitting remain. Further, as high-performance electrocatalysts that satisfy industrial requirements are urgently needed, a better understanding of water-splitting systems is required. In this paper, the latest progress in water electrolysis is reviewed, and experimental evidence from in situ/operando spectroscopic surveys and computational analyses is summarized to present a mechanistic understanding of hydrogen and oxygen evolution reactions. Furthermore, some promising strategies, including alloying, morphological engineering, interface construction, defect engineering, and strain engineering for designing and synthesizing electrocatalysts are highlighted. We believe that this review will provide a knowledge-guided design in fundamental science and further inspire technical engineering developments for constructing efficient electrocatalysts for water splitting.

Keywords: mechanism, water splitting, design strategy, operando spectroscopy

References(122)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable Sustainable Energy Rev. 2022, 161, 112279.

[3]

Wu, H.; Cheng, Y. J.; Wang, B. Y.; Wang, Y.; Wu, M.; Li, W. D.; Liu, B. Z.; Lu, S. Y. Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane. J. Energy Chem. 2021, 57, 198–205.

[4]

Xiao, X.; Yang, L. J.; Sun, W. P.; Chen, Y.; Yu, H.; Li, K. K.; Jia, B. H.; Zhang, L.; Ma, T. Y. Electrocatalytic water splitting: From harsh and mild conditions to natural seawater. Small 2022, 18, 2105830.

[5]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[6]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[7]

Wei, Z. H.; Liu, Y.; Peng, Z. K.; Song, H. Q.; Liu, Z. Y.; Liu, B. Z.; Li, B. J.; Yang, B.; Lu, S. Y. Cobalt-ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 2019, 7, 7014–7023.

[8]

Wang, L. P.; Wu, X. Q.; Guo, S. J.; Han, M. M.; Zhou, Y. J.; Sun, Y.; Huang, H.; Liu, Y.; Kang, Z. H. Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2017, 5, 2717–2723.

[9]

Liu, Y.; Yong, X.; Liu, Z. Y.; Chen, Z. M.; Kang, Z. H.; Lu, S. Y. Unified catalyst for efficient and stable hydrogen production by both the electrolysis of water and the hydrolysis of ammonia borane. Adv. Sustain. Syst. 2019, 3, 1800161.

[10]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[11]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[12]

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

[13]

Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.

[14]

Wu, H.; Lu, S. Y.; Yang, B. Carbon-dot-enhanced electrocatalytic hydrogen evolution. Acc. Mater. Res. 2022, 3, 319–330.

[15]

Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.

[16]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[17]

Zhao, F.; Wen, B.; Niu, W. H.; Chen, Z.; Yan, C.; Selloni, A.; Tully, C. G.; Yang, X. F.; Koel, B. E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification. J. Am. Chem. Soc. 2021, 143, 15616–15623.

[18]

Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

[19]

Ma, P. Y.; Feng, C.; Kong, Y.; Wang, D. D.; Zuo, M.; Wang, S. C.; Wang, R. Y.; Kuang, L. L.; Ding, X. L.; Zhou, S. M. et al. Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution. Chem Catal. 2022, 2, 2764–2777.

[20]

Zhao, S. Y.; Berry-Gair, J.; Li, W. Y.; Guan, G. Q.; Yang, M. N.; Li, J. W.; Lai, F. L.; Corà, F.; Holt, K.; Brett, D. J. L. et al. The role of phosphate group in doped cobalt molybdate: Improved electrocatalytic hydrogen evolution performance. Adv. Sci. 2020, 7, 1903674.

[21]
Zaik, K.; Werle, S. Solar and wind energy in Poland as power sources for electrolysis process—A review of studies and experimental methodology. Int. J. Hydrogen Energy, in press,https://doi.org.10.1016/j.ijhydene.2022.02.074.
[22]

AlRafea, K.; Fowler, M.; Elkamel, A.; Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrogen Energy 2016, 41, 16718–16728.

[23]

Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

[24]

Cheng, Y. F.; Fan, X.; Liao, F.; Lu, S. K.; Li, Y. Y.; Liu, L. B.; Li, Y. Q.; Lin, H. P.; Shao, M. W.; Lee, S. T. Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy 2017, 39, 284–290.

[25]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

[26]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[27]

Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

[28]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

[29]

Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

[30]

Jin, H.; Choi, S.; Bang, G. J.; Kwon, T.; Kim, H. S.; Lee, S. J.; Hong, Y.; Lee, D. W.; Park, H. S.; Baik, H. et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy Environ. Sci. 2022, 15, 1119–1130.

[31]

Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. L. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 2019, 5, 558–568.

[32]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

[33]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[34]

Chen, X.; Wang, Q. C.; Cheng, Y. W.; Xing, H. L.; Li, J. Z.; Zhu, X. J.; Ma, L. B.; Li, Y. T.; Liu, D. M. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv. Funct. Mater. 2022, 32, 2112674.

[35]

Zhang, X. H.; Chen, Q. F.; Deng, J. T.; Xu, X. Y.; Zhan, J. R.; Du, H. Y.; Yu, Z. Y.; Li, M. X.; Zhang, M. T.; Shao, Y. H. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 2022, 144, 17748–17752.

[36]

Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

[37]

Yang, X. G.; Wang, Y. X.; Li, C. M.; Wang, D. W. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. 2021, 14, 3446–3457.

[38]

Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

[39]

Li, W. D.; Wei, Z. H.; Wang, B. Y.; Liu, Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Mater. Chem. Front. 2020, 4, 277–284.

[40]

Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.

[41]

Li, C. Q.; Baek, J. B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2020, 5, 31–40.

[42]

Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. N.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multi-step induced strategy to fabricate core–shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 15, 965–971.

[43]

Zhang, S.; Zhang, X.; Shi, X. R.; Zhou, F.; Wang, R. H.; Li, X. J. Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. J. Energy Chem. 2020, 49, 166–173.

[44]

Bao, M. J.; Amiinu, I. S.; Peng, T.; Li, W. Q.; Liu, S. J.; Wang, Z.; Pu, Z. H.; He, D. P.; Xiong, Y. L.; Mu, S. C. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018, 3, 940–945.

[45]

Pang, B. B.; Liu, X. K.; Liu, T. Y.; Chen, T.; Shen, X. Y.; Zhang, W.; Wang, S. C.; Liu, T.; Liu, D.; Ding, T. et al. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy Environ. Sci. 2022, 15, 102–108.

[46]

Li, W. D.; Liu, Y.; Wang, B. Y.; Song, H. Q.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chin. Chem. Lett. 2019, 30, 2323–2327.

[47]

Shen, F.; Wang, Y. M.; Qian, G. F.; Chen, W.; Jiang, W. J.; Luo, L.; Yin, S. B. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B:Environ. 2020, 278, 119327.

[48]

Wu, Q. L.; Luo, M.; Han, J. H.; Peng, W.; Zhao, Y.; Chen, D. C.; Peng, M.; Liu, J.; De Groot, F. M. F.; Tan, Y. W. Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2020, 5, 192–199.

[49]

Sun, X. C.; Liu, F.; Chen, X.; Li, C. C.; Yu, J.; Pan, M. Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim. Acta 2019, 307, 206–213.

[50]

Vassalini, I.; Borgese, L.; Mariz, M.; Polizzi, S.; Aquilanti, G.; Ghigna, P.; Sartorel, A.; Amendola, V.; Alessandri, I. Enhanced electrocatalytic oxygen evolution in Au-Fe nanoalloys. Angew. Chem., Int. Ed. 2017, 56, 6589–6593.

[51]

Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

[52]

Katiyar, N. K.; Biswas, K.; Yeh, J. W.; Sharma, S.; Tiwary, C. S. A perspective on the catalysis using the high entropy alloys. Nano Energy 2021, 88, 106261.

[53]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[54]

Chang, S. Q.; Cheng, C. C.; Cheng, P. Y.; Huang, C. L.; Lu, S. Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 2022, 446, 137452.

[55]

Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B:Environ. 2022, 313, 121472.

[56]

Gao, Y. X.; Zheng, D. B.; Li, Q. C.; Xiao, W. P.; Ma, T. Y.; Fu, Y. L.; Wu, Z. X.; Wang, L. 3D Co3O4-RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn-air battery. Adv. Funct. Mater. 2022, 32, 2203206.

[57]

Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

[58]

Pan, J.; Yu, S. W.; Jing, Z. W.; Zhou, Q. T.; Dong, Y. F.; Lou, X. D.; Xia, F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021, 2, 2100076.

[59]

Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.

[60]

Huan, Y. H.; Shi, J. P.; Zou, X. L.; Gong, Y.; Xie, C. Y.; Yang, Z. J.; Zhang, Z. P.; Gao, Y.; Shi, Y. P.; Li, M. H. et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 2019, 141, 18694–18703.

[61]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[62]

Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

[63]

Zhou, J. Q.; Yu, L.; Zhou, Q. C.; Huang, C. Q.; Zhang, Y. L.; Yu, B.; Yu, Y. Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B:Environ. 2021, 288, 120002.

[64]

Li, R. Q.; Wang, B. L.; Gao, T.; Zhang, R.; Xu, C. Y.; Jiang, X. F.; Zeng, J. J.; Bando, Y.; Hu, P. F.; Li, Y. L. et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy 2019, 58, 870–876.

[65]

Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

[66]

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

[67]

Wang, X. Y.; Fei, Y.; Chen, J.; Pan, Y. X.; Yuan, W. Y.; Zhang, L. Y.; Guo, C. X.; Li, C. M. Directionally in situ self-assembled, high-density, macropore-oriented, CoP-impregnated, 3D hierarchical porous carbon sheet nanostructure for superior electrocatalysis in the hydrogen evolution reaction. Small 2022, 18, 2103866.

[68]

Shi, Z. P.; Li, J.; Jiang, J. D.; Wang, Y. B.; Wang, X.; Li, Y.; Yang, L. T.; Chu, Y. Y.; Bai, J. S.; Yang, J. H. et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5−x catalyst/support interfaces. Angew. Chem., Int. Ed. 2022, 61, e202212341.

[69]

Wu, H.; Wu, M.; Wang, B. Y.; Yong, X.; Liu, Y. S.; Li, B. J.; Liu, B. Z.; Lu, S. Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. J. Energy Chem. 2020, 48, 43–53.

[70]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[71]

Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott−Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

[72]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal−support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[73]

Zhang, Y. Y.; Huang, H.; Han, Y.; Qin, Y. N.; Nie, N. Z.; Cai, W. W.; Zhang, X. Y.; Li, Z. J.; Lai, J. P.; Wang, L. Constructing stable charge redistribution through strong metal−support interaction for overall water splitting in acidic solution. J. Mater. Chem. A 2022, 10, 13241–13246.

[74]

Zhan, G.; Zhang, J. F.; Wang, Y.; Yu, C. P.; Wu, J. J.; Cui, J. W.; Shu, X.; Qin, Y. Q.; Zheng, H. M.; Sun, J. et al. MoS2 quantum dots decorated ultrathin NiO nanosheets for overall water splitting. J. Colloid Interface Sci. 2020, 566, 411–418.

[75]

Liu, J.; Wang, Z. C.; Wu, X. K.; Zhang, D.; Zhang, Y.; Xiong, J.; Wu, Z. X.; Lai, J. P.; Wang, L. Pt doping and strong metal−support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution. J. Mater. Chem. A 2022, 10, 15395–15401.

[76]

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B:Environ. 2019, 247, 107–114.

[77]

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

[78]

Ge, Y. Y.; Wang, X. X.; Chen, B.; Huang, Z. Q.; Shi, Z. Y.; Huang, B.; Liu, J. W.; Wang, G.; Chen, Y.; Li, L. J. et al. Preparation of fcc-2H-fcc heterophase Pd@Ir nanostructures for high-performance electrochemical hydrogen evolution. Adv. Mater. 2022, 34, 2107399.

[79]

Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

[80]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[81]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[82]

Cheng, Y. J.; Song, H. Q.; Yu, J. K.; Chang, J. W.; Waterhouse, G. I. N.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 2022, 43, 2443–2452.

[83]

Yu, J.; Li, J.; Xu, C. Y.; Li, Q. Q.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Zhu, J. H.; Wang, J. Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy 2022, 98, 107266.

[84]

Shi, G. Y.; Tano, T.; Tryk, D. A.; Yamaguchi, M.; Iiyama, A.; Uchida, M.; Iida, K.; Arata, C.; Watanabe, S.; Kakinuma, K. Temperature dependence of oxygen evolution reaction activity in alkaline solution at Ni-Co oxide catalysts with amorphous/crystalline surfaces. ACS Catal. 2022, 12, 14209–14219.

[85]

Liu, S. D.; Li, H. K.; Zhong, J.; Xu, K.; Wu, G.; Liu, C.; Zhou, B. B.; Yan, Y.; Li, L. X.; Cha, W. H. et al. A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction. Sci. Adv. 2022, 8, eadd6421.

[86]

Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.

[87]

Cheng, Y. J.; Song, H. Q.; Wu, H.; Zhang, P. K.; Tang, Z. Y.; Lu, S. Y. Defects enhance the electrocatalytic hydrogen evolution properties of MoS2-based materials. Chem. Asian J. 2020, 15, 3123–3134.

[88]

Chang, J. W.; Song, X. D.; Yu, C.; Huang, H. W.; Hong, J. F.; Ding, Y. W.; Huang, H. L.; Yu, J. H.; Tan, X. Y.; Zhao, Z. B. et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy 2020, 69, 104377.

[89]

Fang, F.; Wang, Y.; Shen, L. W.; Tian, G.; Cahen, D.; Xiao, Y. X.; Chen, J. B.; Wu, S. M.; He, L.; Ozoemena, K. I. et al. Interfacial carbon makes nano-particulate RuO2 an efficient, stable, pH-universal catalyst for splitting of seawater. Small 2022, 18, 2203778.

[90]

Shah, K.; Dai, R. Y.; Mateen, M.; Hassan, Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y. et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022, 61, e202114951.

[91]

Yan, P. X.; Huang, M. L.; Wang, B. Z.; Wan, Z. X.; Qian, M. C.; Yan, H.; Isimjan, T. T.; Tian, J. N.; Yang, X. L. Oxygen defect-rich double-layer hierarchical porous Co3O4 arrays as high-efficient oxygen evolution catalyst for overall water splitting. J. Energy Chem. 2020, 47, 299–306.

[92]

Cao, X.; Panizon, E.; Vanossi, A.; Manini, N.; Tosatti, E.; Bechinger, C. Pile-up transmission and reflection of topological defects at grain boundaries in colloidal crystals. Nat. Commun. 2020, 11, 3079.

[93]

Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

[94]

Chen, Y. W.; Ding, R.; Li, J.; Liu, J. G. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy. Appl. Catal. B:Environ. 2022, 301, 120830.

[95]

Xie, J. F.; Gao, L.; Jiang, H. L.; Zhang, X. D.; Lei, F. C.; Hao, P.; Tang, B.; Xie, Y. Platinum nanocrystals decorated on defect-rich MoS2 nanosheets for pH-universal hydrogen evolution reaction. Cryst. Growth Des. 2019, 19, 60–65.

[96]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[97]

Zong, R. Q.; Fang, Y. G.; Zhu, C. R.; Zhang, X.; Wu, L.; Hou, X.; Tao, Y. K.; Shao, J. Surface defect engineering on perovskite oxides as efficient bifunctional electrocatalysts for water splitting. ACS Appl. Mater. Interfaces 2021, 13, 42852–42860.

[98]

Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

[99]

Ren, K.; Yin, P. F.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

[100]

Yamazaki, Y.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Defect engineering of Pt/TiO2−x photocatalysts via reduction treatment assisted by hydrogen spillover. ACS Appl. Mater. Interfaces 2021, 13, 48669–48678.

[101]

Chen, K.; Huan, Y. H.; Quan, W. Z.; Zhu, L. J.; Fu, J. T.; Hu, J. Y.; Cui, F. F.; Zhou, F.; Wang, X. Z.; Li, M. J. et al. Controllable growth and defect engineering of vertical PtSe2 nanosheets for electrocatalytic hydrogen evolution. ACS Energy Lett. 2022, 7, 3675–3684.

[102]

Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

[103]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[104]

Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

[105]

Chang, J. W.; Yu, C.; Song, X. D.; Han, X. T.; Ding, Y. W.; Tan, X. Y.; Li, S. F.; Xie, Y. Y.; Zhao, Z. B.; Qiu, J. S. Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy 2021, 89, 106332.

[106]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[107]

Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

[108]

Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022, 8, 1673–1687.

[109]

Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

[110]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[111]

Qin, Y.; Yu, T. T.; Deng, S. H.; Zhou, X. Y.; Lin, D. M.; Zhang, Q.; Jin, Z. Y.; Zhang, D. F.; He, Y. B.; Qiu, H. J. et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784.

[112]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 2020, 32, 2000231.

[113]

Sun, L.; Dai, Z. F.; Zhong, L. X.; Zhao, Y. W.; Cheng, Y.; Chong, S. K.; Chen, G. J.; Yan, C. S.; Zhang, X. Y.; Tan, H. T. et al. Lattice strain and atomic replacement of CoO6 octahedra in layered sodium cobalt oxide for boosted water oxidation electrocatalysis. Appl. Catal. B:Environ. 2021, 297, 120477.

[114]

Wu, G.; Han, X.; Cai, J. Y.; Yin, P. Q.; Cui, P. X.; Zheng, X. S.; Li, H.; Chen, C.; Wang, G. M.; Hong, X. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 2022, 13, 4200.

[115]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[116]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[117]

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[118]

Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Schneider, H.; Helm, M.; Dimakis, E. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 2019, 10, 2793.

[119]

Pedireddy, S.; Lee, H. K.; Koh, C. S. L.; Tan, J. M. R.; Tjiu, W. W.; Ling, X. Y. Nanoporous gold bowls: A kinetic approach to control open shell structures and size-tunable lattice strain for electrocatalytic applications. Small 2016, 12, 4531–4540.

[120]

Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

[121]

Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

[122]

Sun, W.; Zhou, Z. H.; Zaman, W. Q.; Cao, L. M.; Yang, J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862.

File
12274_2023_5502_MOESM1_ESM.pdf (179.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2022
Revised: 07 January 2023
Accepted: 12 January 2023
Published: 02 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 52202050, 52122308, 21905253, and 51973200), the China Postdoctoral Science Foundation (No. 2022TQ0286), and the Natural Science Foundation of Henan Province (No. 202300410372).

Return