Journal Home > Volume 16 , Issue 10

Lanthanum (La) ions are generally recognized to cause a decline of the catalytic performance for Cu-SSZ-13 zeolite in the selective catalytic reduction of NOx with NH3 (NH3-SCR). Herein, we demonstrate that the NH3-SCR performance and hydrothermal stability of Cu-La-SSZ-13 zeolites can be enhanced with the incorporation of a small amount of La ions. The incorporation of La ions into SSZ-13 favors more Z2Cu2+ ions at six-membered rings (6MRs), which results in higher hydrothermal stability of Cu-La-SSZ-13 than that of Cu-SSZ-13. The NO conversion of Cu-La-SSZ-13 achieves 5%–10% higher than that of Cu-SSZ-13 at the temperature range of 400–550 °C after hydrothermal ageing. While introducing excess amount of La ions in SSZ-13 may cause the formation of inactive CuOx, leading to the decrease of catalytic activity and hydrothermal stability. Notably, the low-temperature activity of Cu-SSZ-13 with a low Cu content (≤ 2 wt.%) can be boosted by the introduction of La ions, which is largely due to the improved redox ability of Cu active sites modified by La ions. Density functional theory (DFT) calculations indicate that La ions prefer to locate at eight-membered rings (8MRs) and thus promoting the formation of more Z2Cu2+ ions. Meanwhile, the existence of La ions in SSZ-13 inhibits the dealumination process and the transformation from Z2Cu2+ to CuOx, resulting in its enhanced hydrothermal stability. The present work sheds a new insight into the regulation of secondary metal cations for promoting high NH3-SCR performance over Cu-SSZ-13 zeolite catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts

Show Author's information Mengyang Chen1,3,§Wenru Zhao2,§Yingzhen Wei1Jinfeng Han1Junyan Li1Chang Sun1Donghai Mei2( )Jihong Yu1,3( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
International Center of Future Science, Jilin University, Changchun 130012, China

§ Mengyang Chen and Wenru Zhao contributed equally to this work.

Abstract

Lanthanum (La) ions are generally recognized to cause a decline of the catalytic performance for Cu-SSZ-13 zeolite in the selective catalytic reduction of NOx with NH3 (NH3-SCR). Herein, we demonstrate that the NH3-SCR performance and hydrothermal stability of Cu-La-SSZ-13 zeolites can be enhanced with the incorporation of a small amount of La ions. The incorporation of La ions into SSZ-13 favors more Z2Cu2+ ions at six-membered rings (6MRs), which results in higher hydrothermal stability of Cu-La-SSZ-13 than that of Cu-SSZ-13. The NO conversion of Cu-La-SSZ-13 achieves 5%–10% higher than that of Cu-SSZ-13 at the temperature range of 400–550 °C after hydrothermal ageing. While introducing excess amount of La ions in SSZ-13 may cause the formation of inactive CuOx, leading to the decrease of catalytic activity and hydrothermal stability. Notably, the low-temperature activity of Cu-SSZ-13 with a low Cu content (≤ 2 wt.%) can be boosted by the introduction of La ions, which is largely due to the improved redox ability of Cu active sites modified by La ions. Density functional theory (DFT) calculations indicate that La ions prefer to locate at eight-membered rings (8MRs) and thus promoting the formation of more Z2Cu2+ ions. Meanwhile, the existence of La ions in SSZ-13 inhibits the dealumination process and the transformation from Z2Cu2+ to CuOx, resulting in its enhanced hydrothermal stability. The present work sheds a new insight into the regulation of secondary metal cations for promoting high NH3-SCR performance over Cu-SSZ-13 zeolite catalysts.

Keywords: zeolite, bimetallic catalyst, Cu-SSZ-13, lanthanum, ammonia selective catalytic reduction (NH3-SCR)

References(48)

[1]

Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

[2]

Li, Y.; Li, L.; Yu, J. H. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949.

[3]

Song, J. J.; Liu, S. M.; Ji, Y. J.; Xu, W. Q.; Yu, J.; Liu, B.; Chen, W. X.; Zhang, J. L.; Jia, L. H.; Zhu, T. Y. et al. Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance. Nano Res. 2023, 16, 299–308.

[4]

Lin, Q. J.; Lin, C. L.; Liu, J. Y.; Liu, S.; Xu, H. D.; Chen, Y. Q.; Dan, Y. Optimization of hybrid crystal with SAPO-5/34 on hydrothermal stability for deNOx reaction by NH3. Chem. Res. Chin. Univ. 2020, 36, 1249–1254.

[5]

Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405.

[6]

Li, Y.; Yu, J. H. Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174.

[7]

Shan, Y. L.; Du, J. P.; Zhang, Y.; Shan, W. P.; Shi, X. Y.; Yu, Y. B.; Zhang, R. D.; Meng, X. J.; Xiao, F. S.; He, H. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites. Natl. Sci. Rev. 2021, 8, nwab010.

[8]

Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S. C.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898–903.

[9]

Kwak, J. H.; Zhu, H. Y.; Lee, J. H.; Peden, C. H. F.; Szanyi, J. Two different cationic positions in Cu-SSZ-13? Chem. Commun. 2012, 48, 4758–4760.

[10]

Martini, A.; Borfecchia, E.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: A multivariate XAS/FTIR approach to complexity. Chem. Sci. 2017, 8, 6836–6851.

[11]

Luo, J. Y.; Gao, F.; Kamasamudram, K.; Currier, N.; Peden, C. H. F.; Yezerets, A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. J. Catal. 2017, 348, 291–299.

[12]

Chen, M. Y.; Li, J. Y.; Xue, W. J.; Wang, S.; Han, J. F.; Wei, Y. Z.; Mei, D. H.; Li, Y.; Yu, J. H. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NOx. J. Am. Chem. Soc. 2022, 144, 12816–12824.

[13]

Song, J.; Wang, Y. L.; Walter, E. D.; Washton, N. M.; Mei, D. H.; Kovarik, L.; Engelhard, M. H.; Prodinger, S.; Wang, Y.; Peden, C. H. F. et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal. 2017, 7, 8214–8227.

[14]

Borfecchia, E.; Lomachenko, K. A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A. V.; Bordiga, S.; Lamberti, C. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 2015, 6, 548–563.

[15]

Luo, J. Y.; Wang, D.; Kumar, A.; Li, J. H.; Kamasamudram, K.; Currier, N.; Yezerets, A. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. Catal. Today 2016, 267, 3–9.

[16]

Shan, Y. L.; Du, J. P.; Yu, Y. B.; Shan, W. P.; Shi, X. Y.; He, H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction. Appl. Catal. B 2020, 266, 118655.

[17]

Gao, F.; Szanyi, J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A 2018, 560, 185–194.

[18]

Shan, Y. L.; Shan, W. P.; Shi, X. Y.; Du, J. P.; Yu, Y. B.; He, H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl. Catal. B 2020, 264, 118511.

[19]

Nielsen, M.; Brogaard, R. Y.; Falsig, H.; Beato, P.; Swang, O.; Svelle, S. Kinetics of zeolite dealumination: Insights from H-SSZ-13. ACS Catal. 2015, 5, 7131–7139.

[20]

Ehrhardt, K.; Suckow, M.; Lutz, W. Hydrothermal decomposition of aluminosilicate zeolites and prediction of their long-term stability. Stud. Surf. Sci. Catal. 1995, 94, 179–186.

[21]

Wang, Y. J.; Shi, X. Y.; Shan, Y. L.; Du, J. P.; Liu, K.; He, H. Hydrothermal stability enhancement of Al-rich Cu-SSZ-13 for NH3 selective catalytic reduction reaction by ion exchange with cerium and samarium. Ind. Eng. Chem. Res. 2020, 59, 6416–6423.

[22]

Zhao, Z. C.; Yu, R.; Shi, C.; Gies, H.; Xiao, F. S.; De Vos, D.; Yokoi, T.; Bao, X. H.; Kolb, U.; McGuire, R. et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NOx. Catal. Sci. Technol. 2019, 9, 241–251.

[23]

Lee, H.; Song, I.; Jeon, S. W.; Kim, D. H. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity. Catal. Sci. Technol. 2021, 11, 4838–4848.

[24]

Wang, J. G.; Liu, J. Z.; Tang, X. J.; Xing, C.; Jin, T. S. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2021, 418, 129433.

[25]

Deng, D.; Deng, S. J.; He, D. D.; Wang, Z. H.; Chen, Z. P.; Ji, Y.; Yan, G. P.; Hou, G. J.; Liu, L. C.; He, H. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR. J. Rare Earths 2021, 39, 969–978.

[26]

Usui, T.; Liu, Z. D.; Ibe, S.; Zhu, J.; Anand, C.; Igarashi, H.; Onaya, N.; Sasaki, Y.; Shiramata, Y.; Kusamoto, T. et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce. ACS Catal. 2018, 8, 9165–9173.

[27]

Park, J. H.; Park, H. J.; Baik, J. H.; Nam, I. S.; Shin, C. H.; Lee, J. H.; Cho, B. K.; Oh, S. H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process. J. Catal. 2006, 240, 47–57.

[28]

Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Appl. Catal. B 2014, 154–155, 339–349.

[29]

Fan, C.; Chen, Z.; Pang, L.; Ming, S. J.; Dong, C. Y.; Brou Albert, K.; Liu, P.; Wang, J. Y.; Zhu, D. J.; Chen, H. P. et al. Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem. Eng. J. 2018, 334, 344–354.

[30]

Wei, Y. Z.; Chen, M. Y.; Ren, X. Y.; Wang, Q. F.; Han, J. F.; Wu, W. Z.; Yang, X. G.; Wang, S.; Yu, J. H. One-pot three-dimensional printing robust self-supporting MnOx/Cu-SSZ-13 zeolite monolithic catalysts for NH3-SCR. CCS Chem. 2022, 4, 1708–1719.

[31]

Zhao, Z. C.; Yu, R.; Zhao, R. R.; Shi, C.; Gies, H.; Xiao, F. S.; de Vos, D.; Yokoi, T.; Bao, X. H.; Kolb, U. et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Appl. Catal. B 2017, 217, 421–428.

[32]

Chen, J. L.; Huang, W.; Bao, S. Z.; Zhang, W. B.; Liang, T. Y.; Zheng, S. K.; Yi, L.; Guo, L.; Wu, X. Q. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR. RSC Adv. 2022, 12, 27746–27765.

[33]

Xue, J. J.; Wang, X. Q.; Qi, G. S.; Wang, J.; Shen, M. Q.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 297, 56–64.

[34]

Jangjou, Y.; Do, Q.; Gu, Y. T.; Lim, L. G.; Sun, H.; Wang, D.; Kumar, A.; Li, J. H.; Grabow, L. C.; Epling, W. S. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure. ACS Catal. 2018, 8, 1325–1337.

[35]

Zhang, T.; Qiu, F.; Li, J. H. Design and synthesis of core–shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance. Appl. Catal. B 2016, 195, 48–58.

[36]

Godiksen, A.; Stappen, F. N.; Vennestrøm, P. N. R.; Giordanino, F.; Rasmussen, S. B.; Lundegaard, L. F.; Mossin, S. Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance. J. Phys. Chem. C 2014, 118, 23126–23138.

[37]

Wan, J.; Chen, J. W.; Zhao, R.; Zhou, R. X. One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J. Environ. Sci. 2021, 100, 306–316.

[38]

Han, S.; Cheng, J.; Zheng, C. K.; Ye, Q.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust. Appl. Surf. Sci. 2017, 419, 382–392.

[39]

Chen, M. Y.; Wei, Y. Z.; Han, J. F.; Yan, W. F.; Yu, J. Y. Enhancing catalytic performance of Cu-SSZ-13 for the NH3-SCR reaction via in situ introduction of Fe3+ with diatomite. Mater. Chem. Front. 2021, 5, 7787–7795.

[40]

Zhang, T.; Li, J. M.; Liu, J.; Wang, D. X.; Zhao, Z.; Cheng, K.; Li, J. H. High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia. AIChE J. 2015, 61, 3825–3837.

[41]

Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H. O.; Marchese, L. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J. Phys. Chem. C 2008, 112, 7193–7200.

[42]

Chen, M. Y.; Sun, Q. M.; Yang, G. J.; Chen, X. X.; Zhang, Q.; Zhang, Y. B.; Yang, X. G.; Yu, J. H. Enhanced performance for selective catalytic reduction of NOx with NH3 over nanosized Cu/SAPO-34 catalysts. ChemCatChem 2019, 11, 3865–3870.

[43]

Han, S. C.; Tang, X. M.; Wang, L. J.; Ma, Y. H.; Chen, W.; Wu, Q. M.; Zhang, L.; Zhu, Q. Y.; Meng, X. J.; Zheng, A. M. et al. Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Appl. Catal. B 2021, 281, 119480.

[44]

Wang, J. C.; Peng, Z. L.; Chen, Y.; Bao, W. R.; Chang, L. P.; Feng, G. In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem. Eng. J. 2015, 263, 9–19.

[45]

Gao, F.; Wang, Y. L.; Washton, N. M.; Kollár, M.; Szanyi, J.; Peden, C. H. F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. ACS Catal. 2015, 5, 6780–6791.

[46]

Shiery, R. C.; McElhany, S. J.; Cantu, D. C. Effect of lanthanum ions on the Brønsted acidity of faujasite and implications for hydrothermal stability. J. Phys. Chem. C 2021, 125, 13649–13657.

[47]

Li, Y. F.; Liu, H.; Zhu, J. Q.; He, P.; Wang, P.; Tian, H. P. DFT study on the accommodation and role of La species in ZSM-5 zeolite. Microporous Mesoporous Mater. 2011, 142, 621–628.

[48]

Li, S. H.; Kong, H. Y.; Zhang, W. P. A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions. Ind. Eng. Chem. Res. 2020, 59, 5675–5685.

File
12274_2023_5500_MOESM1_ESM.pdf (8.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2022
Revised: 06 January 2023
Accepted: 12 January 2023
Published: 27 February 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 22288101, 21920102005, and 21835002) and the 111 Project (No. B17020) for supporting this work.

Return