Journal Home > Volume 16 , Issue 5

Hydrophobic zeolites have been identified as suitable adsorbents for capturing radioactive iodine species from nuclear-power-plant off-gas because of their high stability and strong water resistance. However, only the most common zeolites have been investigated for the capture of molecular iodine to date. Herein, we demonstrate that the composition and pore structure of zeolites considerably affect their iodine adsorption performance. A novel all-silica ExxonMobil material-17 (EMM-17) zeolite having a unique three-dimensional 10(12) × 10(12) × 11-ring channel system exhibits a high adsorption capacity for iodine and methyl iodide in the presence of water. EMM-17 outperforms previously reported zeolites in terms of gravimetric and volumetric adsorption capacity in dynamic adsorption measurements. The excellent iodine/methyl iodide capture properties are attributed to the combination of optimal pore size, high pore volume, strong hydrophobicity, and suitable particle morphology. This study provides useful insights for designing efficient adsorbents for iodine capture.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient capture of iodine and methyl iodide using all-silica EMM-17 zeolite

Show Author's information Tingting PanXinglong DongYu Han( )
Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Hydrophobic zeolites have been identified as suitable adsorbents for capturing radioactive iodine species from nuclear-power-plant off-gas because of their high stability and strong water resistance. However, only the most common zeolites have been investigated for the capture of molecular iodine to date. Herein, we demonstrate that the composition and pore structure of zeolites considerably affect their iodine adsorption performance. A novel all-silica ExxonMobil material-17 (EMM-17) zeolite having a unique three-dimensional 10(12) × 10(12) × 11-ring channel system exhibits a high adsorption capacity for iodine and methyl iodide in the presence of water. EMM-17 outperforms previously reported zeolites in terms of gravimetric and volumetric adsorption capacity in dynamic adsorption measurements. The excellent iodine/methyl iodide capture properties are attributed to the combination of optimal pore size, high pore volume, strong hydrophobicity, and suitable particle morphology. This study provides useful insights for designing efficient adsorbents for iodine capture.

Keywords: adsorption, iodine capture, methyl iodide, ExxonMobil material-17 (EMM-17) zeolite

References(43)

[1]
IAEA. The Use of Nuclear Power Beyond Generating Electricity: Non-Electric Applications [Online]. https://www.iaea.org/newscenter/news/the-use-of-nuclear-power-beyond-generating-electricity-non-electric-applications (accessed Oct 23, 2022).
[2]
Haefner, D. R.; Tranter, T. J. Methods of gas phase capture of iodine from fuel reprocessing off-gas: A literature survey. Idaho: Idaho National Laboratory, 2007.
[3]
Jubin, R. T.; Strachan, D. M.; Soelberg, N. R. Iodine pathways and off-gas stream characteristics for aqueous reprocessing plants-a literature survey and assessment. Idaho: Idaho National Laboratory, 2013.
[4]

Nakamura, K.; Saeki, M.; Tachikaw, E. Formation of organic iodides upon heating nitric-acid solutions containing carrier-free lodine-131. J. Nucl. Sci. Technol. 1973, 10, 367–373.

[5]

Abdou, M. A.; Gierszewski, P. J.; Tillack, M. S.; Nakagawa, M.; Reimann, J.; Sze, D. K.; Bartlit, J.; Grover, J.; Puigh, R.; Mcgrath, R. T. Technical issues and requirements of experiments and facilities for fusion nuclear technology. Nucl. Fusion 1987, 27, 619–688.

[6]

Küpper, F. C.; Feiters, M. C.; Olofsson, B.; Kaiho, T.; Yanagida, S.; Zimmermann, M. B.; Carpenter, L. J.; Luther, G. W.; Lu, Z. L.; Jonsson, M. et al. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angew. Chem., Int. Ed. 2011, 50, 11598–11620.

[7]

Saiz-Lopez, A.; Plane, J. M. C.; Baker, A. R.; Carpenter, L. J.; Von Glasow, R.; Martin, J. C. G.; McFiggans, G.; Saunders, R. W. Atmospheric chemistry of iodine. Chem. Rev. 2012, 112, 1773–1804.

[8]

Bronić, J.; Sekovanić, L.; Mužic, A.; Biljan, T.; Kontrec, J.; Subotić, B. Host–guest interaction of iodine with zeolite A. Acta Chim. Slov. 2006, 53, 166–171.

[9]

Korobeinyk, A. V.; Satayeva, A. R.; Chinakulova, A. N.; Inglezakis, V. J. Iodide removal by use of Ag-modified natural zeolites. IOP Conf. Ser. Earth Environ. Sci. 2018, 182, 012014.

[10]

Pham, T. C. T.; Docao, S.; Hwang, I. C.; Song, M. K.; Choi, D. Y.; Moon, D.; Oleynikov, P.; Yoon, K. B. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ. Sci. 2016, 9, 1050–1062.

[11]

Riley, B. J.; Chong, S.; Schmid, J.; Marcial, J.; Nienhuis, E. T.; Bera, M. K.; Lee, S.; Canfield, N. L.; Kim, S.; Derewinski, M. A. et al. Role of zeolite structural properties toward iodine capture: A head-to-head evaluation of framework type and chemical composition. ACS Appl. Mater. Interfaces 2022, 14, 18439–18452.

[12]

Herdes, C.; Prosenjak, C.; Román, S.; Müller, E. A. Fundamental studies of methyl iodide adsorption in DABCO impregnated activated carbons. Langmuir 2013, 29, 6849–6855.

[13]

Ho, K.; Moon, S.; Lee, H. C.; Hwang, Y. K.; Lee, C. H. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)–metal impregnated activated carbons under humid conditions. J. Hazard. Mater. 2019, 368, 550–559.

[14]

Ho, K.; Park, D.; Park, M. K.; Lee, C. H. Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures. Chem. Eng. J. 2020, 396, 125215.

[15]

He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal–organic framework based microcapsules. Angew. Chem., Int. Ed. 2018, 57, 10148–10152.

[16]

Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2011, 133, 12398–12401.

[17]

Yao, S. Y.; Fang, W. H.; Sun, Y. Y.; Wang, S. T.; Zhang, J. Mesoporous assembly of aluminum molecular rings for iodine capture. J. Am. Chem. Soc. 2021, 143, 2325–2330.

[18]

Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal–organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.

[19]

He, L. W.; Chen, L.; Dong, X. L.; Zhang, S. T.; Zhang, M. X.; Dai, X.; Liu, X. J.; Lin, P.; Li, K. F.; Chen, C. L. et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021, 7, 699–714.

[20]

Xie, Y. Q.; Pan, T. T.; Lei, Q.; Chen, C. L.; Dong, X. L.; Yuan, Y. Y.; Al Maksoud, W. A.; Zhao, L.; Cavallo, L.; Pinnau, I. et al. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat. Commun. 2022, 13, 2878.

[21]

Xie, Y. Q.; Pan, T. T.; Lei, Q.; Chen, C. L.; Dong, X. L.; Yuan, Y. Y.; Shen, J.; Cai, Y. C.; Zhou, C. H.; Pinnau, I. et al. Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine-capture capacity. Angew. Chem., Int. Ed. 2021, 60, 22432–22440.

[22]

Zhang, L. Y.; Li, J. H.; Zhang, H. X.; Liu, Y.; Cui, Y. M.; Jin, F. C.; Wang, K.; Liu, G. Y.; Zhao, Y. L.; Zeng, Y. F. High iodine uptake in two-dimensional covalent organic frameworks. Chem. Commun. 2021, 57, 5558–5561.

[23]
Hebel, W.; Cottone, G. Management Modes for Iodine-129. In Radioactive Waste Management Series; Routledge: Netherlands, 1983; pp 7.
[24]

Zhang, X. R.; Da Silva, I.; Godfrey, H. G. W.; Callear, S. K.; Sapchenko, S. A.; Cheng, Y. Q.; Vitórica-Yrezábal, I.; Frogley, M. D.; Cinque, G.; Tang, C. C. et al. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. J. Am. Chem. Soc. 2017, 139, 16289–16296.

[25]

Chang, J. H.; Li, H.; Zhao, J.; Guan, X. Y.; Li, C. M.; Yu, G. T.; Valtchev, V.; Yan, Y. S.; Qiu, S. L.; Fang, Q. R. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chem. Sci. 2021, 12, 8452–8457.

[26]

Wang, C.; Wang, Y.; Ge, R. L.; Song, X. D.; Xing, X. Q.; Jiang, Q. K.; Lu, H.; Hao, C.; Guo, X. W.; Gao, Y. A. et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem.—Eur. J. 2018, 24, 585–589.

[27]

Chapman, K. W.; Chupas, P. J.; Nenoff, T. M. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J. Am. Chem. Soc. 2010, 132, 8897–8899.

[28]

Nan, Y.; Tavlarides, L. L.; DePaoli, D. W. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling. AIChE J. 2017, 63, 1024–1035.

[29]
International Atomic Energy Agency. Treatment, conditioning and disposal of iodine-129. Vienna: International Atomic Energy Agency, Vienna International Centre, 1987.
[30]
Weston, S. C.; Strohmaier, K. G.; Vroman, H. B. Molecular sieve material, its synthesis and use. EP2817262A1, December 31, 2014.
[31]

Weston, S. C.; Peterson, B. K.; Gatt, J. E.; Lonergan, W. W.; Vroman, H. B.; Afeworki, M.; Kennedy, G. J.; Dorset, D. L.; Shannon, M. D.; Strohmaier, K. G. EMM-17, a new three-dimensional zeolite with unique 11-ring channels and superior catalytic isomerization performance. J. Am. Chem. Soc. 2019, 141, 15910–15920.

[32]

Liu, X. N.; Liu, L. M.; Pan, T. T.; Yan, N. N.; Dong, X. L.; Li, Y. H.; Chen, L.; Tian, P.; Han, Y.; Guo, P. et al. The complex crystal structure and abundant local defects of zeolite EMM-17 unraveled by combined electron crystallography and microscopy. Angew. Chem., Int. Ed. 2021, 60, 24227–24233.

[33]

Song, S. A.; Shi, Y.; Liu, N.; Liu, F. Q. C-N linked covalent organic framework for the efficient adsorption of iodine in vapor and solution. RSC Adv 2021, 11, 10512–10523.

[34]

Sava, D. F.; Chapman, K. W.; Rodriguez, M. A.; Greathouse, J. A.; Crozier, P. S.; Zhao, H. Y.; Chupas, P. J.; Nenoff, T. M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chem. Mater. 2013, 25, 2591–2596.

[35]

Tang, Y. Z.; Huang, H. L.; Li, J.; Xue, W. J.; Zhong, C. L. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. J. Mater. Chem. A 2019, 7, 18324–18329.

[36]

Dai, D. H.; Yang, J.; Zou, Y. C.; Wu, J. R.; Tan, L. L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y. W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem., Int. Ed. 2021, 60, 8967–8975.

[37]

Abubakar, S.; Skorjanc, T.; Shetty, D.; Trabolsi, A. Porous polycalix[n]arenes as environmental pollutant removers. ACS Appl. Mater. Interfaces 2021, 13, 14802–14815.

[38]

Han, T. T.; Wang, L. N.; Potgieter, J. H. ZIF-11 derived nanoporous carbons with ultrahigh uptakes for capture and reversible storage of volatile iodine. J. Solid State Chem. 2020, 282, 121108.

[39]

Zhang, Z. Y.; Dong, X. L.; Yin, J.; Li, Z. G.; Li, X.; Zhang, D. L.; Pan, T. T.; Lei, Q.; Liu, X. L.; Xie, Y. Q. et al. Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures. J. Am. Chem. Soc. 2022, 144, 6821–6829.

[40]
Scheele, R. D.; Burger, L. L.; Matsuzaki, C. L. Methyl iodide sorption by reduced silver mordenite. Richland: Pacific Northwest Laboratory, 1983.
[41]

Li, B. Y.; Dong, X. L.; Wang, H.; Ma, D. X.; Tan, K.; Jensen, S.; Deibert, B. J.; Butler, J.; Cure, J.; Shi, Z. et al. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nat. Commun. 2017, 8, 485.

[42]

Zhang, H. P.; Gong, L. L.; Yin, M. J.; Xiong, X. H.; Zhang, Q. Y.; Feng, X. F.; Luo, F.; Carney, J. B.; Yue, Y. F. Efficient organic iodide capture by a mesoporous bimetallic–organic framework. Cell Rep. Phys. Sci. 2022, 3, 100830.

[43]

Samarghandi, M. R.; Hadi, M.; McKay, G. Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone-derived active carbon. Adsorpt Sci. Technol. 2014, 32, 791–806.

File
12274_2022_5497_MOESM1_ESM.pdf (530.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 October 2022
Revised: 26 December 2022
Accepted: 08 January 2023
Published: 18 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research is supported by the AMPM CCF fund (No. FCC/1/1972-43-01) to Y. H. from King Abdullah University of Science and Technology.

Return