Journal Home > Volume 16 , Issue 7

To validate the crystal structure and elucidate the formation mechanism of the unexpected surface copper boride, a systematic scanning tunneling microscope, X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and aberration-corrected scanning transmission electron microscopy investigations were conducted to confirm the structure of copper-rich boride Cu8B14 after depositing boron on single-crystal Cu(111) surface under ultrahigh vacuum. First-principles calculations with defective surface models further indicate that boron atoms tend to react with Cu atoms near terrace edges or defects, which in turn shapes the intermediate structures of copper boride and leads to the formation of stable Cu-B monolayer via large-scale surface reconstruction eventually.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Experimental evidence of surface copper boride

Show Author's information Xiao-Ji Weng1Jie Bai1Jingyu Hou1,2Yi Zhu1Li Wang3Penghui Li1Anmin Nie1Bo Xu1( )Xiang-Feng Zhou1( )Yongjun Tian1
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract

To validate the crystal structure and elucidate the formation mechanism of the unexpected surface copper boride, a systematic scanning tunneling microscope, X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and aberration-corrected scanning transmission electron microscopy investigations were conducted to confirm the structure of copper-rich boride Cu8B14 after depositing boron on single-crystal Cu(111) surface under ultrahigh vacuum. First-principles calculations with defective surface models further indicate that boron atoms tend to react with Cu atoms near terrace edges or defects, which in turn shapes the intermediate structures of copper boride and leads to the formation of stable Cu-B monolayer via large-scale surface reconstruction eventually.

Keywords: formation mechanism, first principles, structure characterization, surface science, copper boride, ultrahigh vacuum

References(36)

[1]

Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

[2]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[3]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[4]

Liu, X. L.; Zhang, Z. H.; Wang, L. Q.; Yakobson, B. I.; Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 2018, 17, 783–788.

[5]

Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

[6]

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

[7]

Wang, Y.; Kong, L. J.; Chen, C. Y.; Cheng, P. J.; Feng, B. J.; Wu, K. H.; Chen, L. Realization of regular-mixed quasi-1D borophene chains with long-range order. Adv. Mater. 2020, 32, 2005128.

[8]

Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.

[9]

Liu, X. L.; Li, Q. C.; Ruan, Q. Y.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40.

[10]

Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001(R).

[11]

Wu, R. T.; Eltinge, S.; Drozdov, I. K.; Gozar, A.; Zahl, P.; Sadowski, J. T.; Ismail-Beigi, S.; Božović, I. Micrometre-scale single-crystalline borophene on a square-lattice Cu(100) surface. Nat. Chem. 2022, 14, 377–383.

[12]

Chen, C. Y.; Lv, H. F.; Zhang, P.; Zhuo, Z. W.; Wang, Y.; Ma, C.; Li, W. B.; Wang, X. G.; Feng, B. J.; Cheng, P. et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31.

[13]

Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

[14]

Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.

[15]

Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.

[16]

Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. 2015, 127, 13214–13218.

[17]

Zhou, X. F.; Oganov, A. R.; Wang, Z. H.; Popov, I. A.; Boldyrev, A. I.; Wang, H. T. Two-dimensional magnetic boron. Phys. Rev. B 2016, 93, 085406.

[18]

Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.

[19]

Xu, S. G.; Li, X. T.; Zhao, Y. J.; Liao, J. H.; Xu, W. P.; Yang, X. B.; Xu, H. Two-dimensional semiconducting boron monolayers. J. Am. Chem. Soc. 2017, 139, 17233–17236.

[20]

Zhu, M. H.; Weng, X. J.; Gao, G. Y.; Dong, S.; Lin, L. F.; Wang, W. H.; Zhu, Q.; Oganov, A. R.; Dong, X.; Tian, Y. J. et al. Magnetic borophenes from an evolutionary search. Phys. Rev. B 2019, 99, 205412.

[21]

Yue, C. G.; Weng, X. J.; Gao, G. Y.; Oganov, A. R.; Dong, X.; Shao, X.; Wang, X. M.; Sun, J.; Xu, B.; Wang, H. T. et al. Formation of copper boride on Cu(111). Fundam. Res. 2021, 1, 482–487.

[22]
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, 1992.
[23]

Tsujikawa, Y.; Horio, M.; Zhang, X. N.; Senoo, T.; Nakashima, T.; Ando, Y.; Ozaki, T.; Mochizuki, I.; Wada, K.; Hyodo, T. et al. Structural and electronic evidence of boron atomic chains. Phys. Rev. B 2022, 106, 205406.

[24]

Tong, Y. F.; Bouaziz, M.; Zhang, W.; Obeid, B.; Loncle, A.; Oughaddou, H.; Enriquez, H.; Chaouchi, K.; Esaulov, V.; Chen, Z. S. et al. Evidence of new 2D material: Cu2Te. 2D Mater. 2020, 7, 035010.

[25]

Zhang, Z. H.; Mannix, A. J.; Liu, X. L.; Hu, Z. L.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Near-equilibrium growth from borophene edges on silver. Sci. Adv. 2019, 5, eaax0246.

[26]

Küchle, J. T.; Baklanov, A.; Seitsonen, A. P.; Ryan, P. T. P.; Feulner, P.; Pendem, P.; Lee, T. L.; Muntwiler, M.; Schwarz, M.; Haag, F. et al. Silicene’s pervasive surface alloy on Ag(111): A scaffold for two-dimensional growth. 2D Mater. 2022, 9, 045021.

[27]

Jia, J. J.; Zhang, H. J.; Wang, Z. X.; Zhao, J. X.; Zhou, Z. A Cu2B2 monolayer with planar hypercoordinate motifs: An efficient catalyst for CO electroreduction to ethanol. J. Mater. Chem. A 2020, 8, 9607–9615.

[28]

Weng, X. J.; He, X. L.; Hou, J. Y.; Hao, C. M.; Dong, X.; Gao, G. Y.; Tian, Y. J.; Xu, B.; Zhou, X. F. First-principles prediction of two-dimensional copper borides. Phys. Rev. Mater. 2020, 4, 074010.

[29]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[30]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.

[33]

Chen, M. X.; Weinert, M. Layer k-projection and unfolding electronic bands at interfaces. Phys. Rev. B 2018, 98, 245421.

[34]

Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704.

[35]

Zhu, Q.; Li, L.; Oganov, A. R.; Allen, P. B. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys. Rev. B 2013, 87, 195317.

[36]

Zhou, X. F.; Oganov, A. R.; Shao, X.; Zhu, Q.; Wang, H. T. Unexpected reconstruction of the α-boron(111) surface. Phys. Rev. Lett. 2014, 113, 176101.

File
12274_2023_5496_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2022
Revised: 31 December 2022
Accepted: 08 January 2023
Published: 27 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11874224 and 52025026), the National Key Research and Development Program of China (No. 2018YFA0305900), and the Natural Science Foundation of Hebei Province of China (No. E2022203109). The authors are grateful for the technical support from Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO).

Return