Journal Home > Volume 16 , Issue 7

Two-/three-dimensional (2D/3D) heterojunction-based photodetectors have attracted much attention due to their highly efficient photoelectric conversion driven by the built-in electric field for high-speed photoresponse. However, a large dark current induced by unexpected surface states at the interface between 2D materials and 3D bulks is widely observed in such structures, greatly degrading their optoelectronic performance. Herein, a heterojunction of proton acid HCl treated MXene (H-MXene)/TiO2/Si via integrating surface and interface engineering is fabricated, which exhibits decreased dark current and improved environmental stability. A feasible strategy to optimize the interface properties between MXene and Si is proposed by an in-situ oxidation process of MXene into TiO2, resulting in a suppressed dark current as well as high specific detectivity. Benefitting from the enhanced light absorption of MXene on the bulk Si substrate, the photoresponse of as-fabricated devices in the near-infrared region is also elevated. Moreover, the treatment of proton acid HCl on the surface of MXene brings better conductivity and environmental stability due to the decreased layer spacing of MXene, which is further confirmed by both experimental and theoretical methods. This work opens a unique way to comprehensively boost the optoelectronic performance of MXene-based photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Integrating surface and interface engineering to improve optoelectronic performance and environmental stability of MXene-based heterojunction towards broadband photodetection

Show Author's information Zhifang Liu1,§Mingjie Li1,§Yilin Sun1( )Huaipeng Wang2Hongwu Chen3Yulan Tian4Han Wang1Yingtao Ding1Zhiming Chen1( )
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Zhifang Liu and Mingjie Li contributed equally to this work.

Abstract

Two-/three-dimensional (2D/3D) heterojunction-based photodetectors have attracted much attention due to their highly efficient photoelectric conversion driven by the built-in electric field for high-speed photoresponse. However, a large dark current induced by unexpected surface states at the interface between 2D materials and 3D bulks is widely observed in such structures, greatly degrading their optoelectronic performance. Herein, a heterojunction of proton acid HCl treated MXene (H-MXene)/TiO2/Si via integrating surface and interface engineering is fabricated, which exhibits decreased dark current and improved environmental stability. A feasible strategy to optimize the interface properties between MXene and Si is proposed by an in-situ oxidation process of MXene into TiO2, resulting in a suppressed dark current as well as high specific detectivity. Benefitting from the enhanced light absorption of MXene on the bulk Si substrate, the photoresponse of as-fabricated devices in the near-infrared region is also elevated. Moreover, the treatment of proton acid HCl on the surface of MXene brings better conductivity and environmental stability due to the decreased layer spacing of MXene, which is further confirmed by both experimental and theoretical methods. This work opens a unique way to comprehensively boost the optoelectronic performance of MXene-based photodetectors.

Keywords: photodetectors, ion exchange, in-situ oxidation, Ti3C2Tx MXene, two-/three-dimensional (2D/3D) heterojunction

References(50)

[1]

Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

[2]

Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

[3]

Chen, J. W.; Li, L.; Gong, P. L.; Zhang, H. L.; Yin, S. Q.; Li, M.; Wu, L. F.; Gao, W. S.; Long, M. S.; Shan, L. et al. A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754.

[4]

Li, G.; Zhang, H. L.; Li, Y.; Yin, S. Q.; Kan, X. C.; Wei, W. S.; Du, H. F.; Ge, B. H.; An, C.; Tian, M. L. et al. Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2. Nano Res. 2022, 15, 5469–5475.

[5]

Kang, Z.; Ma, Y. N.; Tan, X. Y.; Zhu, M.; Zheng, Z.; Liu, N. S.; Li, L. Y.; Zou, Z. G.; Jiang, X. L.; Zhai, T. Y. MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 2017, 3, 1700165.

[6]

Song, W. D.; Liu, Q.; Chen, J. X.; Chen, Z.; He, X.; Zeng, Q. G.; Li, S. T.; He, L. F.; Chen, Z. T.; Fang, X. S. Interface engineering Ti3C2 MXene/silicon self-powered photodetectors with high responsivity and detectivity for weak light applications. Small 2021, 17, 2100439.

[7]

Xie, C.; Wang, Y.; Wang, S. L.; Yang, W. H.; Zeng, W.; Huang, Z. X.; Yan, F. Ti3C2Tx MXene/Ge 2D/3D van der Waals heterostructures as highly efficient and fast response near-infrared photodetectors. Appl. Phys. Lett. 2022, 120, 141103.

[8]

Luo, L. Z.; Huang, Y. X.; Cheng, K. M.; Alhassan, A.; Alqahtani, M.; Tang, L. B.; Wang, Z. M.; Wu, J. MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors. Light Sci. Appl. 2021, 10, 177.

[9]

Song, W. D.; Chen, J. X.; Li, Z. L.; Fang, X. S. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 2021, 33, 2101059.

[10]

Zhang, Y.; Xu, Y.; Gao, L.; Liu, X.; Fu, Y.; Ma, C.; Ge, Y.; Cao, R.; Zhang, X.; Al-Hartomy, O. et al. MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. Mater. Today Phys. 2021, 21, 100479.

[11]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[12]

Miao, J. S.; Liu, X. W.; Jo, K.; He, K.; Saxena, R.; Song, B. K.; Zhang, H. Q.; He, J. L.; Han, M. G.; Hu, W. D. et al. Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces. Nano Lett. 2020, 20, 2907–2915.

[13]

Ji, P. R.; Yang, S. M.; Wang, Y.; Li, K. L.; Wang, Y. M.; Suo, H.; Woldu, Y. T.; Wang, X. M.; Wang, F.; Zhang, L. L. et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsyst. Nanoeng. 2022, 8, 9.

[14]

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

[15]

Won, U. Y.; Lee, B. H.; Kim, Y. R.; Kang, W. T.; Lee, I.; Kim, J. E.; Lee, Y. H.; Yu, W. J. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector. Nano Res. 2021, 14, 1967–1972.

[16]

Xu, J.; Liu, T.; Hu, H.; Zhai, Y. S.; Chen, K.; Chen, N.; Li, C.; Zhang, X. B. Design and optimization of tunneling photodetectors based on graphene/Al2O3/silicon heterostructures. Nanophotonics 2020, 9, 3841–3848.

[17]

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

[18]

Gogotsi, Y.; Huang, Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano 2021, 15, 5775–5780.

[19]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[20]

Chen, H. W.; Ma, H. Y.; Li, C. Host–guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 2021, 15, 15502–15537.

[21]

Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach, E. A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429.

[22]

Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

[23]

Muckley, E. S.; Naguib, M.; Wang, H. W.; Vlcek, L.; Osti, N. C.; Sacci, R. L.; Sang, X. H.; Unocic, R. R.; Xie, Y.; Tyagi, M. et al. Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 2017, 11, 11118–11126.

[24]

Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

[25]

Wang, H. W.; Naguib, M.; Page, K.; Wesolowski, D. J.; Gogotsi, Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater. 2016, 28, 349–359.

[26]

Chen, H. W.; Wen, Y. Y.; Qi, Y. Y.; Zhao, Q.; Qu, L. T.; Li, C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 2020, 30, 1906996.

[27]

Ma, H. L.; Jia, L.; Lin, Y. N.; Fang, H. J.; Wu, W. T.; Wu, L. L.; Hu, B.; Wang, H. A self-powered photoelectrochemical ultraviolet photodetector based on Ti3C2Tx/TiO2 in situ formed heterojunctions. Nanotechnology 2022, 33, 075502.

[28]

Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K. A.; Lee, D. S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018, 349, 748–755.

[29]

Dall'Agnese, C.; Dall'Agnese, Y.; Anasori, B.; Sugimoto, W.; Mori, S. Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New J. Chem. 2018, 42, 16446–16450.

[30]

Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q. H. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019, 20, 299–306.

[31]

Diebold, U.; Madey, T. E. TiO2 by XPS. Surf. Sci. Spectra 1996, 4, 227–231.

[32]

Tian, J. T.; Chen, L. J.; Dai, J. H.; Wang, X.; Yin, Y. S.; Wu, P. W. Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process. Ceram. Int. 2009, 35, 2261–2270.

[33]

Xu, L. H.; Wu, T.; Kent, P. R. C.; Jiang, D. E. Interfacial charge transfer and interaction in the MXene/TiO2 heterostructures. Phys. Rev. Mater. 2021, 5, 054007.

[34]

Ma, J.; Jiang, Q.; Zhou, Y. N.; Chu, W.; Perathoner, S.; Jiang, C. F.; Wu, K. H.; Centi, G.; Liu, Y. F. Tuning the chemical properties of Co-Ti3C2Tx MXene materials for catalytic CO2 reduction. Small 2021, 17, 2007509.

[35]

Deng, X. M.; Chen, Y.; Wen, J. Y.; Xu, Y.; Zhu, J.; Bian, Z. F. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction. Sci. Bull. 2020, 65, 105–112.

[36]

Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 2001, 17, 2664–2669.

[37]

Cao, R. P.; Lv, X. Y.; Jiao, Y. M.; Ran, Y. Q.; Guo, S. L.; Ao, H.; Chen, T.; Fan, T. Ca3La6Si6O24: Eu3+ orange-red-emitting phosphor: Synthesis, structure and luminescence properties. Mater. Res. Bull. 2020, 122, 110651.

[38]

Wang, W.; Lin, H.; Yang, Z. H.; Wang, Z. L.; Wang, J. J.; Zhang, L. F.; Liao, M. D.; Zeng, Y. H.; Gao, P. Q.; Yan, B. J. et al. An expanded Cox and Strack method for precise extraction of specific contact resistance of transition metal oxide/n-silicon heterojunction. IEEE J. Photovolt. 2019, 9, 1113–1120.

[39]

Wang, Z. H.; Li, H. B.; Luo, M. L.; Chen, T. H.; Xia, X. F.; Chen, H. L.; Ma, C. Y.; Guo, J.; He, Z. W.; Song, Y. F. et al. MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Appl. Nano Mater. 2020, 3, 3513–3522.

[40]

Li, Y.; Xiong, C.; Huang, H.; Peng, X. D.; Mei, D. Q.; Li, M.; Liu, G. Z.; Wu, M. C.; Zhao, T. S.; Huang, B. L. 2D Ti3C2Tx MXenes: Visible black but infrared white materials. Adv. Mater. 2021, 33, 2103054.

[41]

Sun, Y. M.; Song, W. D.; Gao, F. L.; Wang, X. F.; Luo, X. J.; Guo, J. Q.; Zhang, B. L.; Shi, J.; Cheng, C.; Liu, Q. et al. In situ conformal coating of polyaniline on gan microwires for ultrafast, self-driven heterojunction ultraviolet photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 13473–13480.

[42]

Jiang, L. L.; Duan, J. J.; Zhu, J. W.; Chen, S.; Antonietti, M. Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis. ACS Nano 2020, 14, 2436–2444.

[43]

Li, Y. X.; Chang, K. S. Hydrothermal fabrication of p-Cu2O-n-ZnO films and their properties for photodegradation and ultraviolet sensors. J. Am. Ceram. Soc. 2022, 105, 3896–3908.

[44]

Curnan, M. T.; Kitchin, J. R. Investigating the energetic ordering of stable and metastable TiO2 polymorphs using DFT + U and hybrid functionals. J. Phys. Chem. C 2015, 119, 21060–21071.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[46]

Neaton, J. B.; Ashcroft, N. W. Pairing in dense lithium. Nature 1999, 400, 141–144.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[49]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[50]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

File
12274_2023_5495_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 December 2022
Revised: 29 December 2022
Accepted: 09 January 2023
Published: 26 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

H. P. W. from Tsinghua University contributed to the theoretical calculation. All the authors discussed and participated into the paper writing. The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 62104017 and 62074015), the project funded by China Postdoctoral Science Foundation under Grant 2022M720422 and Beijing Institute of Technology Research Fund Program for Young Scholars. We also thanked the Tsinghua Xuetang Talents Program.

Return