Journal Home > Volume 16 , Issue 7

As the basis of machine vision, the biomimetic image sensing devices are the eyes of artificial intelligence. In recent years, with the development of two-dimensional (2D) materials, many new optoelectronic devices are developed for their outstanding performance. However, there are still little sensing arrays based on 2D materials with high imaging quality, due to the poor uniformity of pixels caused by material defects and fabrication technique. Here, we propose a 2D MoS2 sensing array based on artificial neural network (ANN) learning. By equipping the MoS2 sensing array with a “brain” (ANN), the imaging quality can be effectively improved. In the test, the relative standard deviation (RSD) between pixels decreased from about 34.3% to 6.2% and 5.49% after adjustment by the back propagation (BP) and Elman neural networks, respectively. The peak signal to noise ratio (PSNR) and structural similarity (SSIM) of the image are improved by about 2.5 times, which realizes the re-recognition of the distorted image. This provides a feasible approach for the application of 2D sensing array by integrating ANN to achieve high quality imaging.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A two-dimensional MoS2 array based on artificial neural network learning for high-quality imaging

Show Author's information Long Chen1Siyuan Chen2Jinchao Wu1Luhua Chen1Shuai Yang1Jian Chu1Chengming Jiang1Sheng Bi1Jinhui Song1( )
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
School of Computer Science, Southwest Petroleum University, Chengdu 610500, China

Abstract

As the basis of machine vision, the biomimetic image sensing devices are the eyes of artificial intelligence. In recent years, with the development of two-dimensional (2D) materials, many new optoelectronic devices are developed for their outstanding performance. However, there are still little sensing arrays based on 2D materials with high imaging quality, due to the poor uniformity of pixels caused by material defects and fabrication technique. Here, we propose a 2D MoS2 sensing array based on artificial neural network (ANN) learning. By equipping the MoS2 sensing array with a “brain” (ANN), the imaging quality can be effectively improved. In the test, the relative standard deviation (RSD) between pixels decreased from about 34.3% to 6.2% and 5.49% after adjustment by the back propagation (BP) and Elman neural networks, respectively. The peak signal to noise ratio (PSNR) and structural similarity (SSIM) of the image are improved by about 2.5 times, which realizes the re-recognition of the distorted image. This provides a feasible approach for the application of 2D sensing array by integrating ANN to achieve high quality imaging.

Keywords: artificial neural network, two-dimensional MoS2, sensing array, individual difference, imaging quality

References(53)

[1]

Meng, J. L.; Wang, T. Y.; Zhu, H.; Ji, L.; Bao, W. Z.; Zhou, P.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 2022, 22, 81–89.

[2]

Choi, C.; Leem, J.; Kim, M.; Taqieddin, A.; Cho, C.; Cho, K. W.; Lee, G. J.; Seung, H.; Bae, H. J.; Song, Y. M. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934.

[3]

Wu, P. S.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C. X. et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat 2021, 4, e12275.

[4]

Yuan, J. T.; Liu, S. E.; Shylendra, A.; Gaviria Rojas, W. A.; Guo, S. L.; Bergeron, H.; Li, S. W.; Lee, H. S.; Nasrin, S.; Sangwan, V. K. et al. Reconfigurable MoS2 memtransistors for continuous learning in spiking neural networks. Nano Lett. 2021, 21, 6432–6440.

[5]

Li, D.; Wu, B.; Zhu, X. J.; Wang, J. T.; Ryu, B.; Lu, W. D.; Lu, W.; Liang, X. G. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 2018, 12, 9240–9252.

[6]

Liao, F. Y.; Zhou, Z.; Kim, B. J.; Chen, J. W.; Wang, J. L.; Wan, T. Q.; Zhou, Y.; Hoang, A. T.; Wang, C.; Kang, J. F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91.

[7]

Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806.

[8]

Li, N.; He, C. L.; Wang, Q. Q.; Tang, J. S.; Zhang, Q. T.; Shen, C.; Tang, J.; Huang, H. Y.; Wang, S. P.; Li, J. W. et al. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 2022, 15, 5418–5424.

[9]

Islam, M. M.; Krishnaprasad, A.; Dev, D.; Martinez-Martinez, R.; Okonkwo, V.; Wu, B.; Han, S. S.; Bae, T. S.; Chung, H. S.; Touma, J. et al. Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 2022, 16, 10188–10198.

[10]

Han, K. H.; Kim, G. S.; Park, J.; Kim, S. G.; Park, J. H.; Yu, H. Y. Reduction of threshold voltage hysteresis of MoS2 transistors with 3-aminopropyltriethoxysilane passivation and its application for improved synaptic behavior. ACS Appl. Mater. Interfaces 2019, 11, 20949–20955.

[11]

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Advanced Functional Materials 2021, 31, 2170247.

[12]

Dodda, A.; Trainor, N.; Redwing, J. M.; Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 2022, 13, 3587.

[13]

Sun, Y. L.; Li, M. J.; Ding, Y. T.; Wang, H. P.; Wang, H.; Chen, Z. M.; Xie, D. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 2022, 4, e12317.

[14]

Jang, H.; Liu, C. Y.; Hinton, H.; Lee, M. H.; Kim, H.; Seol, M.; Shin, H. J.; Park, S.; Ham, D. An atomically thin optoelectronic machine vision processor. Adv. Mater. 2020, 32, 2002431.

[15]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[16]

Jeong, Y.; Lee, H. J.; Park, J.; Lee, S.; Jin, H. J.; Park, S.; Cho, H.; Hong, S.; Kim, T.; Kim, K. et al. Engineering MoSe2/MoS2 heterojunction traps in 2D transistors for multilevel memory, multiscale display, and synaptic functions. npj 2D Mater. Appl. 2022, 6, 23.

[17]

Zang, L. Y.; Chen, L.; Tan, D. C.; Cao, X. G.; Sun, N.; Jiang, C. M. Research on multi-morphology evolution of MoS2 in chemical vapor deposition. ChemistrySelect 2021, 6, 8107–8113.

[18]

Nur, R.; Tsuchiya, T.; Toprasertpong, K.; Terabe, K.; Takagi, S.; Takenaka, M. A floating gate negative capacitance MoS2 phototransistor with high photosensitivity. Nanoscale 2022, 14, 2013–2022.

[19]

Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.

[20]

Ma, S. L.; Wu, T. X.; Chen, X. Y.; Wang, Y.; Tang, H. W.; Yao, Y. T.; Wang, Y.; Zhu, Z. Y.; Deng, J. N.; Wan, J. et al. An artificial neural network chip based on two-dimensional semiconductor. Sci. Bull. 2022, 67, 270–277.

[21]

Kim, K. S.; Ji, Y. J.; Kim, K. H.; Choi, S.; Kang, D. H.; Heo, K.; Cho, S.; Yim, S.; Lee, S.; Park, J. H. et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 2019, 10, 4701.

[22]

Chen, L.; Zang, L. Y.; Chen, L. H.; Wu, J. C.; Jiang, C. M.; Song, J. H. Study on the catalyst effect of NaCl on MoS2 growth in a chemical vapor deposition process. CrystEngComm 2021, 23, 5337–5344.

[23]

Yin, S. Q.; Luo, Z. C.; Li, Q.; Xiong, C. Y.; Liu, Y. L.; Singh, R.; Zeng, F.; Zhong, Y.; Zhang, X. Z. Emulation of learning and memory behaviors by memristor based on Ag migration on 2D MoS2 surface. Phys. Stat. Solidi (A) 2019, 216, 1900104.

[24]

Fung, V.; Zhang, J. X.; Hu, G. X.; Ganesh, P.; Sumpter, B. G. Inverse design of two-dimensional materials with invertible neural networks. npj Computat. Mater. 2021, 7, 212.

[25]

Krishnaprasad, A.; Dev, D.; Han, S. S.; Shen, Y. Q.; Chung, H. S.; Bae, T. S.; Yoo, C.; Jung, Y.; Lanza, M.; Roy, T. MoS2 synapses with ultra-low variability and their implementation in boolean logic. ACS Nano 2022, 16, 2866–2876.

[26]

Naqi, M.; Kang, M. S.; Liu, N.; Kim, T.; Baek, S.; Bala, A.; Moon, C.; Park, J.; Kim, S. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater. Appl. 2022, 6, 53.

[27]

Radhakrishnan, S. S.; Sebastian, A.; Oberoi, A.; Das, S.; Das, S. A biomimetic neural encoder for spiking neural network. Nat. Commun. 2021, 12, 2143.

[28]

Zhou, Y.; Wang, Y. S.; Zhuge, F. W.; Guo, J. M.; Ma, S. J.; Wang, J. L.; Tang, Z. J.; Li, Y.; Miao, X. S.; He, Y. H. et al. A reconfigurable two-WSe2-transistor synaptic cell for reinforcement learning. Adv. Mater. 2022, 34, 2107754.

[29]

Yang, X. X.; Yu, J. R.; Zhao, J.; Chen, Y. H.; Gao, G. Y.; Wang, Y. F.; Sun, Q. J.; Wang, Z. L. Mechanoplastic tribotronic floating-gate neuromorphic transistor. Adv. Funct. Mater. 2020, 30, 2002506.

[30]

Zhang, M.; Fan, Z. H.; Jiang, X. X.; Zhu, H.; Chen, L.; Xia, Y. D.; Yin, J.; Liu, X. K.; Sun, Q. Q.; Zhang, D. W. MoS2-based charge-trapping synaptic device with electrical and optical modulated conductance. Nanophotonics 2020, 9, 2475–2486.

[31]

Lee, E.; Kim, J.; Bhoyate, S.; Cho, K.; Choi, W. Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chem. Mater. 2020, 32, 10447–10455.

[32]

Wang, B. L.; Wang, X. W.; Wang, E. Z.; Li, C. Y.; Peng, R. X.; Wu, Y. H.; Xin, Z. Q.; Sun, Y. F.; Guo, J.; Fan, S. S. et al. Monolayer MoS2 synaptic transistors for high-temperature neuromorphic applications. Nano Lett. 2021, 21, 10400–10408.

[33]

Xu, R. J.; Jang, H.; Lee, M. H.; Amanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H. J.; Ham, D. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 2019, 19, 2411–2417.

[34]

Migliato Marega, G.; Wang, Z. Y.; Paliy, M.; Giusi, G.; Strangio, S.; Castiglione, F.; Callegari, C.; Tripathi, M.; Radenovic, A.; Iannaccone, G. et al. Low-power artificial neural network perceptron based on monolayer MoS2. ACS Nano 2022, 16, 3684–3694.

[35]

Yan, X. D.; Ma, J. H.; Wu, T.; Zhang, A. Y.; Wu, J. B.; Chin, M.; Zhang, Z. H.; Dubey, M.; Wu, W.; Chen, M. S. W. et al. Reconfigurable stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine. Nat. Commun. 2021, 12, 5710.

[36]

Nam, J. H.; Oh, S.; Jang, H. Y.; Kwon, O.; Park, H.; Park, W.; Kwon, J. D.; Kim, Y.; Cho, B. Low power MoS2/Nb2O5 memtransistor device with highly reliable heterosynaptic plasticity. Adv. Funct. Mater. 2021, 31, 2104174.

[37]

Ke, Y. Z.; Mao, L. N.; Jie, W. J.; Gong, T. X.; Huang, W.; Zhang, X. S. An artificial electrical-chemical mixed synapse based on ion-gated MoS2 nanosheets for real-time facilitation index tuning. ACS Appl. Mater. Interfaces 2021, 13, 15755–15760.

[38]

Xie, D. D.; Jiang, J.; Hu, W. N.; He, Y. L.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition. ACS Appl. Mater. Interfaces 2018, 10, 25943–25948.

[39]

Dodda, A.; Das, S. Demonstration of stochastic resonance, population coding, and population voting using artificial MoS2 based synapses. ACS Nano 2021, 15, 16172–16182.

[40]

Arnold, A. J.; Razavieh, A.; Nasr, J. R.; Schulman, D. S.; Eichfeld, C. M.; Das, S. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 2017, 11, 3110–3118.

[41]

Radhakrishnan, S. S.; Chakrabarti, S.; Sen, D.; Das, M.; Schranghamer, T. F.; Sebastian, A.; Das, S. A sparse and spike-timing-based adaptive photoencoder for augmenting machine vision for spiking neural networks. Adv. Mater. 2022, 34, 2202535.

[42]

Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.

[43]

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

[44]

Neri, I.; López-Suárez, M.; Caponi, S.; Mattarelli, M. Fast MoS2 thickness identification by transmission imaging. Appl. Nanosci. 2021, 11, 605–610.

[45]

Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.

[46]

Khan, H.; Medina, H.; Tan, L. K.; Tjiu, W.; Boden, S. A.; Teng, J. H.; Nandhakumar, I. A single-step route to single-crystal molybdenum disulphide (MoS2) monolayer domains. Sci. Rep. 2019, 9, 4142.

[47]

Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.

[48]

Lee, Y. T.; Kang, J. H.; Kwak, K.; Ahn, J.; Choi, H. T.; Ju, B. K.; Shokouh, S. H.; Im, S.; Park, M. C.; Hwang, D. K. High-performance 2D MoS2 phototransistor for photo logic gate and image sensor. ACS Photon. 2018, 5, 4745–4750.

[49]

Liu, H.; Gao, F.; Hu, Y. X.; Zhang, J.; Wang, L. F.; Feng, W.; Hou, J.; Hu, P. G. Enhanced photoresponse of monolayer MoS2 through hybridization with carbon quantum dots as efficient photosensitizer. 2D Mater. 2019, 6, 035025.

[50]

Dong, W. S.; Wang, P. Y.; Yin, W. T.; Shi, G. M.; Wu, F. F.; Lu, X. T. Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2305–2318.

[51]

Wen, S. P.; Xiao, S. X.; Yang, Y.; Yan, Z.; Zeng, Z. G.; Huang, T. W. Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 38, 1084–1094.

[52]

Li, X. Y.; Zhang, L.; Wang, Z. P.; Dong, P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J. Energy Storage 2019, 21, 510–518.

[53]

Chen, L.; Zang, L. Y.; Wu, J. C.; Tan, D. C.; Li, Z. X.; Song, J. H.; Jiang, C. M. High-output photodetector by microlithographic mono-layer MoS2 for image sensor. Adv. Mater. Techhnol. 2022, 8, 2200707.

File
12274_2023_5494_MOESM1_ESM.pdf (981.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2022
Revised: 05 January 2023
Accepted: 08 January 2023
Published: 09 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This project was financially supported by the Dalian Science and Technology Innovation Fund of China (No. 2019J11CY011) and the Science Fund for Creative Research Groups of NSFC (No. 51621064).

Return