AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Fast UV–vis–NIR photoresponse of self-oriented F16CuPc nanoribbons

Lingyu Zhang1,§Xingyu Wang1,2,§Wei Zhou1Hao Wang1Jiaxun Song1Zihao Zhao1Jihui Liao1Jian Song1Yajun Li1Jinyou Xu1( )
Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

§ Lingyu Zhang and Xingyu Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Periodic hydrophobic nanogrooves formed on a sapphire surface enable self-oriented growth of F16CuPc nanoribbons with a consistent growth axis, and accordingly, photodetectors with response times of tens of milliseconds in the ultraviolet–visible–near-infrared (UV–vis–NIR) spectral range are implemented directly on their growth substrate.

Abstract

Controlling the vapor-deposited nanoribbons to grow along a consistent orientation will enable the desired in situ integration of functional devices, representing a major technological advance compared to post-growth processing strategies. In this work, n-type F16CuPc molecules are self-assembled into horizontally-oriented nanoribbons with a consistent growth axis after creating periodic hydrophobic nanogrooves on a sapphire surface. Consequently, electrodes are deposited directly on the growth substrate to enable in situ fabrication of photodetectors. Depending on the deposited electrodes, these horizontally-oriented nanoribbons are connected to form a monolithic photodetector with a large sensing area or an on-chip array of photodetectors with multiple detector units. This in situ integration strategy avoids potential structural damage and contamination from impurities associated with post-growth processing steps. Therefore, the vapor-deposited nanoribbons can retain their high quality during the device manufacturing process, which contributes to performance improvement. As a result, the in-situ integrated F16CuPc photodetectors exhibit a sensitive response in the ultraviolet–visible–near-infrared (UV–vis–NIR) region. The response time is on the order of tens of milliseconds, the fastest record ever for the F16CuPc-based photodetectors. Furthermore, statistics from an array of 6 × 6 photodetectors show little variation in their sensitivity and response time, and hence this in situ fabrication scheme will contribute to the implementation of on-chip integrated photodetectors with consistent performance based on bottom-up nanoribbons. Overall, this self-oriented growth provides a versatile option to achieve desired in-situ integrated functional devices based on bottom-up nanoribbons.

Electronic Supplementary Material

Download File(s)
12274_2023_5493_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Pan, J.; Deng, W.; Xu, X. Z.; Jiang, T. H.; Zhang, X. J.; Jie, J. S. Photodetectors based on small-molecule organic semiconductor crystals. Chin. Phys. B 2019, 28, 038102.

[2]

Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

[3]

Zhuang, X. J.; Guo, P. F.; Zhang, Q. L.; Liu, H. W.; Li, D.; Hu, W.; Zhu, X. L.; Zhou, H.; Pan, A. L. Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Res. 2016, 9, 933–941.

[4]

Zou, T. Y.; Wang, X. Y.; Ju, H. D.; Wu, Q.; Guo, T. T.; Wu, W.; Wang, H. Crystal structure tuning in organic nanomaterials for fast response and high sensitivity visible-NIR photo-detector. J. Mater. Chem. C 2018, 6, 1495–1503.

[5]

Park, J. H.; Cho, S. W.; Park, S. H.; Jeong, J. G.; Kim, H. J.; Yi, Y.; Cho, M. H. The effect of copper hexadecafluorophthalocyanine (F16CuPc) inter-layer on pentacene thin-film transistors. Synth. Met. 2010, 160, 108–112.

[6]

Tang, Q.; Li, L.; Song, Y.; Liu, Y.; Li, H.; Xu, W.; Liu, Y.; Hu, W.; Zhu, D. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater. 2007, 19, 2624–2628.

[7]

Jin-Phillipp, N. Y.; Krauss, T. N.; Van Aken, P. A. The growth of one-dimensional CuPcF16 nanostructures on gold nanoparticles as studied by transmission electron microscopy tomography. ACS Nano 2012, 6, 4039–4044.

[8]

Shen, C. F.; Kahn, A. Electronic structure, diffusion, and p-doping at the Au/F16CuPc interface. J. Appl. Phys. 2001, 90, 4549–4554.

[9]

Mbenkum, B. N.; Barrena, E.; Zhang, X. N.; Kelsch, M.; Dosch, H. Selective growth of organic 1-D structures on Au nanoparticle arrays. Nano Lett. 2006, 6, 2852–2855.

[10]

Flores, S. Y.; Gonzalez-Espiet, J.; Cintrón, J.; Villanueva, N. D. J.; Camino, F. E.; Kisslinger, K.; Cruz, D. M. P.; Rivera, R. D.; Fonseca, L. F. Fluorinated iron and cobalt phthalocyanine nanowire chemiresistors for environmental gas monitoring at parts-per-billion levels. ACS Appl. Nano Mater. 2022, 5, 4688–4699.

[11]

Yan, D. W.; Feng, Y. T.; Wang, C. R. Self-assembled array of rectangular single-crystal microtubes of perchlorinated copper phthalocyanines. Prog. Nat. Sci. :Mater. Int. 2013, 23, 543–548.

[12]

Ling, M. M.; Bao, Z. N.; Erk, P. Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Appl. Phys. Lett. 2006, 89, 163516.

[13]

Wu, Y. M.; Zhang, X. J.; Pan, H. H.; Zhang, X. W.; Zhang, Y. P.; Zhang, X. Z.; Jie, J. S. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors. Nanotechnology 2013, 24, 355201.

[14]

Zhang, Y. P.; Wang, X. D.; Wu, Y. M.; Jie, J. S.; Zhang, X. W.; Xing, Y. L.; Wu, H. H.; Zou, B.; Zhang, X. J.; Zhang, X. H. Aligned ultralong nanowire arrays and their application in flexible photodetector devices. J. Mater. Chem. 2012, 22, 14357–14362.

[15]

Koshy, R.; Menon, C. S. Effect of vacuum annealing on the optoelectric and morphological properties of F16CuPc thin films. J. Chem. 2012, 9, 101686.

[16]

Kol’tsov, E.; Basova, T.; Semyannikov, P.; Igumenov, I. Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16. Mater. Chem. Phys. 2004, 86, 222–227.

[17]

Nath, D.; Dey, P.; Joseph, A. M.; Rakshit, J. K.; Roy, J. N. Photocurrent generation under forward bias with interfacial tunneling of carrier at pentacene/F16CuPc heterojunction photodetector. J. Alloys Compd. 2020, 815, 152401.

[18]

Park, J. E.; Mukherjee, B.; Cho, H.; Kim, S.; Pyo, S. Flexible N-channel organic phototransistor on polyimide substrate. Synth. Met. 2011, 161, 143–147.

[19]

Yan, H.; Li, Y.; Qin, J. K.; Hu, P. A.; Zhen, L.; Xu, C. Y. Charge transport behavior and ultrasensitive photoresponse performance of exfoliated F16CuPc nanoflakes. Adv. Opt. Mater. 2019, 7, 1901097.

[20]

Yoon, S. M.; Song, H. J.; Hwang, I. C.; Kim, K. S.; Choi, H. C. Single crystal structure of copper hexadecafluorophthalocyanine (F16CuPc) ribbon. Chem. Comm. 2010, 46, 231–233.

[21]

Sun, Y.; Dong, T. G.; Yu, L. W.; Xu, J.; Chen, K. J. Planar growth, integration, and applications of semiconducting nanowires. Adv. Mater. 2020, 32, 1903945.

[22]

Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560–4580.

[23]

Li, L.; Auer, E.; Liao, M. Y.; Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 2011, 3, 1120–1126.

[24]

Fang, X. S.; Xiong, S. L.; Zhai, T. Y.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Koide, Y.; Zhang, X. G.; Qian, Y. T.; Golberg, D. High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors. Adv. Mater. 2009, 21, 5016–5021.

[25]

Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y.; Wang, H. Q.; Bando, Y.; Golberg, D. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 22, 3161–3165.

[26]

Yim, J. W. L.; Chen, D.; Brown, G. F.; Wu, J. Q. Synthesis and ex situ doping of ZnTe and ZnSe nanostructures with extreme aspect ratios. Nano Res. 2009, 2, 931–937.

[27]

Gabai, R.; Ismach, A.; Joselevich, E. Nanofacet lithography: A new bottom-up approach to nanopatterning and nanofabrication by soft replication of spontaneously faceted crystal surfaces. Adv. Mater. 2007, 19, 1325–1330.

[28]

Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue-UV photodetectors. Adv. Mater. 2015, 27, 3999–4005.

[29]

Shalev, E.; Oksenberg, E.; Rechav, K.; Popovitz-Biro, R.; Joselevich, E. Guided CdSe nanowires parallelly integrated into fast visible-range photodetectors. ACS Nano 2017, 11, 213–220.

[30]

Xu, J. Y.; Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls. J. Am. Chem. Soc. 2017, 139, 15958–15967.

[31]

Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS-CdSe core–shell nanowalls. Adv. Mater. 2018, 30, 1800413.

[32]

Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633.

[33]

Hlawacek, G.; Puschnig, P.; Frank, P.; Winkler, A.; Ambrosch-Draxl, C.; Teichert, C. Characterization of step-edge barriers in organic thin-film growth. Science 2008, 321, 108–111.

[34]

Wacaser, B. A.; Dick, K. A.; Johansson, J.; Borgström, M. T.; Deppert, K.; Samuelson, L. Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 2009, 21, 153–165.

[35]

Zhang, G. Y.; Yan, M. Q.; Teng, X. Y.; Bi, H.; Han, Y. Y.; Tian, M. L.; Wang, M. T. Formation of ultra-long nanoribbons by self-assembly of carbon dots and anionic oligomers for multi-colored fluorescence and electrical conduction. Chem. Commun. 2014, 50, 10244–10247.

[36]

El-Nahass, M. M.; Abd-El-Rahman, K. F.; Al-Ghamdi, A. A.; Asiri, A. M. Optical properties of thermally evaporated tin-phthalocyanine dichloride thin films, SnPcCl2. Phys. B: Condens. Matter 2004, 344, 398–406.

[37]

Jiang, Z.; Yang, F.; Yang, G. D.; Kong, L.; Jones, M. O.; Xiao, T. C.; Edwards, P. P. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A: Chem. 2010, 212, 8–13.

[38]

Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 1966, 15, 627–637.

[39]

Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2019, 13, 1–4.

[40]

Ghosh, S.; Kargar, F.; Mohammadzadeh, A.; Rumyantsev, S.; Balandin, A. A. Low-frequency electronic noise in quasi-2D van der Waals antiferromagnetic semiconductor FePS3-signatures of phase transitions. Adv. Electron. Mater. 2021, 7, 2100408.

[41]

Liu, G. X.; Rumyantsev, S.; Bloodgood, M. A.; Salguero, T. T.; Shur, M.; Balandin, A. A. Low-frequency electronic noise in quasi-1D TaSe3 van der Waals Nanowires. Nano Lett. 2017, 17, 377–383.

[42]

Chen, C. H.; Lee, C. T. High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors. IEEE Photonics Technol. Lett. 2013, 25, 348–351.

[43]

Song, J. X.; Shu, K. X.; Wang, J. L.; Wang, X. F.; Huo, N. J.; Nötzel, R. Origin of the low-frequency 1/f noise of a photoelectrochemical photodetector. IEEE Trans. Electron Devices 2022, 69, 6184–6187.

[44]

Rose, A. Performance of photoconductors. Proc. IRE 1955, 43, 1850–1869.

[45]

Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.

[46]

Bube, R. H. Photoconductivity of the sulfide, selenide, and telluride of zinc or cadmium. Proc. IRE 1955, 43, 1836–1850.

Nano Research
Pages 9561-9568
Cite this article:
Zhang L, Wang X, Zhou W, et al. Fast UV–vis–NIR photoresponse of self-oriented F16CuPc nanoribbons. Nano Research, 2023, 16(7): 9561-9568. https://doi.org/10.1007/s12274-023-5493-5
Topics:

1205

Views

9

Crossref

9

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 16 November 2022
Revised: 24 December 2022
Accepted: 10 January 2023
Published: 13 March 2023
© Tsinghua University Press 2023
Return