Journal Home > Volume 16 , Issue 7

The practical application of all-inorganic semiconductor lead halide perovskite nanocrystals (LHP NCs) has been limited by their poor stability. Recently, a lot of research on core–shell structure has been done to improve the stability of perovskite NCs, but the effect was far from the application requirements. Herein, we, for the first time, report a convenient approach to synthesize organic–inorganic double shell CsPbBr3@SiO2@polystyrene (PS) NCs with an inter-core of CsPbBr3, the intermediate layer of SiO2 shell, and outmost PS shell. Particularly, the CsPbBr3@SiO2@PS NCs maintained more than 90% of their initial photoluminescence (PL) intensity under one month's ultraviolet lamp irradiation or in 85 °C and 85% relative humidity (RH) condition. The white-light-emitting-diodes (WLEDs) were fabricated by encapsulating commercial InGaN chip with CsPbBr3@SiO2@PS NCs and K2SiF6:Mn4+ (KSF:Mn4+) phosphor with a luminous efficacy of ~ 100 lm/W at 20 mA current and a color gamut of 128% of the National Television Standards Committee (NTSC) standard. In addition, these WLEDs still maintain 91% of the initial luminous efficacy after 1200 h of continuous lighting. These results demonstrated that double shell-protected CsPbBr3 perovskite NCs have great potential in the field of WLEDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Organic polystyrene and inorganic silica double shell protected lead halide perovskite nanocrystals with high emission efficiency and superior stability

Show Author's information Shujian Wang1,2Dejian Chen3,4Kunyuan Xu3,4Jie Hu3,4Decai Huang3,4Maochun Hong1,2,3,4( )Haomiao Zhu1,2,3,4( )
University of Science and Technology of China, Hefei 230026, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China

Abstract

The practical application of all-inorganic semiconductor lead halide perovskite nanocrystals (LHP NCs) has been limited by their poor stability. Recently, a lot of research on core–shell structure has been done to improve the stability of perovskite NCs, but the effect was far from the application requirements. Herein, we, for the first time, report a convenient approach to synthesize organic–inorganic double shell CsPbBr3@SiO2@polystyrene (PS) NCs with an inter-core of CsPbBr3, the intermediate layer of SiO2 shell, and outmost PS shell. Particularly, the CsPbBr3@SiO2@PS NCs maintained more than 90% of their initial photoluminescence (PL) intensity under one month's ultraviolet lamp irradiation or in 85 °C and 85% relative humidity (RH) condition. The white-light-emitting-diodes (WLEDs) were fabricated by encapsulating commercial InGaN chip with CsPbBr3@SiO2@PS NCs and K2SiF6:Mn4+ (KSF:Mn4+) phosphor with a luminous efficacy of ~ 100 lm/W at 20 mA current and a color gamut of 128% of the National Television Standards Committee (NTSC) standard. In addition, these WLEDs still maintain 91% of the initial luminous efficacy after 1200 h of continuous lighting. These results demonstrated that double shell-protected CsPbBr3 perovskite NCs have great potential in the field of WLEDs.

Keywords: core–shell structure, high stability, organic polystyrene (PS) inorganic SiO2 double shell, CsPbBr3@SiO2@PS nanocrystals (NCs)

References(60)

[1]

Zhang, C. X.; Chen, J. Y.; Wang, S.; Kong, L. M.; Lewis, S. W.; Yang, X. Y.; Rogach, A. L.; Jia, G. H. Metal halide perovskite nanorods: Shape matters. Adv. Mater. 2020, 32, 2002736.

[2]

Lin, J. H.; Gomez, L.; de Weerd, C.; Fujiwara, Y.; Gregorkiewicz, T.; Suenaga, K. Direct observation of band structure modifications in nanocrystals of CsPbBr3 perovskite. Nano Lett. 2016, 16, 7198–7202.

[3]

Ravi, V. K.; Swarnkar, A.; Chakraborty, R.; Nag, A. Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and nanoplatelets. Nanotechnology 2016, 27, 325708.

[4]

Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099.

[5]

Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3093–3097.

[6]

Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

[7]

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

[8]

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

[9]

Li, X.; Wen, Z. L.; Ding, S. H.; Fang, F.; Xu, B.; Sun, J. Y.; Liu, C. X.; Wang, K.; Sun, X. W. Facile in situ fabrication of Cs4PbBr6/CsPbBr3 nanocomposite containing polymer films for ultrawide color gamut displays. Adv. Opt. Mater. 2020, 8, 2000232.

[10]

Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Perovskites for next-generation optical sources. Chem. Rev. 2019, 119, 7444–7477.

[11]

Chang, S.; Bai, Z. L.; Zhong, H. Z. In situ fabricated perovskite nanocrystals: A revolution in optical materials. Adv. Opt. Mater. 2018, 6, 1800380.

[12]

Articles, M.; Gandais, M. Habit and structure of Cd(S, Se) quantum dots in silicate glasses: High-resolution transmission electron microscopy. Philos. Mag. Lett. 1992, 65, 243–248.

[13]

Takahashi, T.; Arakawa. Y.; Nishioka. M.; Ikoma, T. MOCVD selective growth of GaAs: C wire and dot structures by electron beam irradiation. J. Cryst. Growth 1992, 124, 213–219.

[14]

Kim, Y. S.; Lee, U. H.; Lee, D.; Rhee, S. J.; Leem, Y. A.; Ko, H. S.; Kim, D. H.; Woo, J. C. Energy-level engineering of self-assembled quantum dots by using AlGaAs alloy cladding layers. J. Appl. Phys. 2000, 87, 241–244.

[15]

Liu, C. M.; Zeng, Q. S.; Wei, H. T.; Yu, Y.; Zhao, Y.; Feng, T. L.; Yang, B. Metal halide perovskite nanocrystal solar cells: Progress and challenges. Small Methods 2020, 4, 2000419.

[16]

Leijtens. T.; Bush, K.; Cheacharoen, R.; Beal, R.; Bowring, A.; McGehee, M. D. Towards enabling stable lead halide perovskite solar cells; Interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 2017, 5, 11483–11500.

[17]

Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H. Y.; Nam, K. T. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2017, 2, 16185.

[18]

Toshniwal, A.; Kheraj, V. Development of organic-inorganic tin halide perovskites: A review. Solar Energy 2017, 149, 54–59.

[19]

Chen, Y. N.; He, M. H.; Peng, J. J.; Sun, Y.; Liang, Z. Q. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392.

[20]

Batmunkh, M.; Shearer, C. J.; Biggs, M. J.; Shapter, J. G. Nanocarbons for mesoscopic perovskite solar cells. J. Mater. Chem. A 2013, 3, 9020–9031.

[21]

Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

[22]

Chen, D. J.; Huang, D. C.; Yang, M. W.; Xu, K. Y.; Hu, J.; Liang, S. S.; Zhu, H. M. Precursor chemistry towards highly efficient and phase-stable red emitting CsPbI3 perovskite nanocrystals. Nano Res. 2022, 15, 644–652.

[23]

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. e al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

[24]

Alpert, M. R.; Niezgoda, J. S.; Chen, A. Z.; Foley, B. J.; Cuthriell, S.; Yoon, L. U.; Choi, J. J. Colloidal nanocrystals as a platform for rapid screening of charge trap passivating molecules for metal halide perovskite thin films. Chem. Mater. 2018, 30, 4515–4526.

[25]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[26]

Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T. e al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710–10717.

[27]

Zhong, Q. X.; Cao, M. H.; Hu, H. C.; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano 2018, 12, 8579–8587.

[28]

Guan, K. S. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 2005, 191, 155–160.

[29]

Chen, P. Y.; Hu, Y.; Wei, C. H. Preparation of superhydrophilic mesoporous SiO2 thin films. Appl. Surf. Sci. 2012, 258, 4334–4338.

[30]

Li, S. W.; Liu, Y. F. Synthesis and characterizations of mesoporous YVO4: Eu3+@SiO2. IOP Conf. Ser. :Mater. Sci. Eng. 2019, 479, 012118.

[31]

Wang, S. J.; Wu, C. Z.; Yu, H. B.; Li, T.; Yan, X. D.; Yan, B.; Yin, H. F. Fabrication of Ir-CoOx@mesoporous SiO2 nanoreactors for selective hydrogenation of substituted nitroaromatics. ACS Appl. Mater. Interfaces 2020, 12, 9966–9976.

[32]

He, Y. J.; Yoon, Y. J.; Harn, Y. W.; Biesold-McGee, G. V.; Liang, S.; Lin, C. H.; Tsukruk, V. V.; Thadhani, N.; Kang, Z. T.; Lin, Z. Q. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 2019, 5, eaax4424.

[33]

Luo, B. B.; Pu, Y. C.; Lindley, S. A.; Yang, Y.; Lu, L. Q.; Li, Y.; Li, X. M.; Zhang, J. Z. Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability. Angew. Chem., Int. Ed. 2016, 55, 8864–8868.

[34]
Shankar, H.; Bansal, P.; Yu, W. W.; Kar, P. Aqueous precursor induced morphological change and improved water stability of CsPbBr3 nanocrystals. Chem. -Eur. J. 2020, 26, 12242–12248.
[35]

Smet, S.; Verlooy, P.; Saïdi, F.; Taulelle, F.; Martens, J. A.; Martineau-Corcos, C. Solid-state NMR tools for the structural characterization of POSiSils: 29Si sensitivity improvement with MC-CP and 2D 29Si-29Si DQ-SQ at natural abundance. Magn. Reson. Chem. 2019, 57, 224–229.

[36]

Ogura, M.; Nakata, S. I.; Kikuchi, E.; Matsukata, M. Effect of NH4+ exchange on hydrophobicity and catalytic properties of Al-free Ti-Si-beta zeolite. J. Catal. 2001, 199, 41–47.

[37]

Sindorf, D. W.; Maciel, G. E. Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes. J. Am. Chem. Soc. 1983, 105, 3767–3776.

[38]

Xu, L. L.; Liu, G. Y.; Xiang, H. Y.; Wang, R.; Shan, Q. S.; Yuan, S. C.; Cai, B.; Li, Z.; Li, W. J.; Zhang, S. L. et al. Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Appl. Phys. Rev. 2022, 9, 021308.

[39]

Wang, J.; Li, W.; Yin, W. J. Passivating detrimental DX centers in CH3NH3PbI3 for reducing nonradiative recombination and elongating carrier lifetime. Adv. Mater. 2020, 32, 1906115.

[40]

Ravi, V. K.; Saikia, S.; Yadav, S.; Nawale, V. V.; Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 2020, 5, 1794–1796.

[41]

Liu, Z. Q.; Zhang, Y. Q.; Fan, Y.; Chen, Z. Q.; Tang, Z. B.; Zhao, J. L.; Lv, Y.; Lin, J.; Guo, X. Y.; Zhang, J. H. et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl. Mater. Interfaces 2018, 10, 13053–13061.

[42]

Li, X. W.; Cai, W. S.; Guan, H. L.; Zhao, S. Y.; Cao, S. L.; Chen, C.; Liu, M.; Zang, Z. G. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem. Eng. J. 2021, 419, 129551.

[43]

Cabrera, I. C.; Berlioz, S.; Fahs, A.; Louarn, G.; Carriere, P. Chemical functionalization of nano fibrillated cellulose by glycidyl silane coupling agents: A grafted silane network characterization study. Int. J. Biol. Macromol. 2020, 165, 1773–1782.

[44]

Krishnan, G. S.; Naveen, S.; Shahnawaz, M. Thermal rearrangements during liquid-vapor phase pyrolysis polycondensation of polysilane to high-functional polycarbosilane: Spectral and thermal studies. J. Therm. Anal. Calorim. 2021, 147, 1251–1264.

[45]

Lucia, A.; Bacher, M.; van Herwijnen, H. W. G.; Rosenau, T. A direct silanization protocol for dialdehyde cellulose. Molecules 2020, 25, 2458.

[46]

Meng, C. F.; Yang, D. D.; Wu, Y.; Zhang, X. J.; Zeng, H. B.; Li, X. M. Synthesis of single CsPbBr3@SiO2 core–shell particles via surface activation. J. Mater. Chem. C 2020, 8, 17403–17409.

[47]

Chaudhary, A. K.; Vijayakumar, R. P. Synthesis of polystyrene/starch/CNT composite and study on its biodegradability. J. Polym. Res. 2020, 27, 187.

[48]

Niculăescu, C.; Olar, L.; Stefan, R.; Todica, M.; Pop, C. V. XRD and IR investigations of some commercial polystyrene samples thermally degraded. Stud. Univ. Babes-Bol. Chem. 2018, 63, 63–70.

[49]

Indarti, E.; Marwan; Rohaizu, R.; Wanrosli, W. D. Silylation of TEMPO oxidized nanocellulose from oil palm empty fruit bunch by 3-aminopropyltriethoxysilane. Int. J. Biol. Macromol. 2019, 135, 106–112.

[50]

Quan, L. N.; García De Arquer, F. P.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.

[51]

Rao, L.; Zhang, Q.; Sun, B.; Wen, M.; Zhang, J.; Yu, S.; Fu, T.; Niu, X. CsPbBr3/Cs4PbBr6 heterostructure solids with high stability and photoluminescence for white light-emitting diodes. J. Alloy. Compd. 2022, 919, 165857.

[52]

Jang, J.; Kim, Y. H.; Park, S.; Yoo, D.; Cho, H.; Jang, J.; Jeong, H. B.; Lee, H.; Yuk, J. M.; Park, C. B. et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years. Adv. Mater. 2021, 33, 2005255.

[53]

He, Y. J.; Liang, Y. C.; Liang, S.; Harn, Y. W.; Li, Z. L.; Zhang, M. Y.; Shen, D. F.; Li, Z. W.; Yan, Y.; Pang, X. C. et al. Dual-protected metal halide perovskite nanosheets with an enhanced set of stabilities. Angew. Chem., Int. Ed. 2021, 60, 7259–7266.

[54]

Gao, F.; Yang, W. Q.; Liu, X. L.; Li, Y. Z.; Liu, W. Z.; Xu, H. Y.; Liu, Y. C. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem. Eng. J. 2021, 407, 128001.

[55]

Duan, Y. Y.; Ezquerro, C.; Serrano, E.; Lalinde, E.; García-Martínez, J.; Berenguer, J. R.; Costa, R. D. Meeting high stability and efficiency in hybrid light-emitting diodes based on SiO2/ZrO2 coated CsPbBr3 perovskite nanocrystals. Adv. Funct. Mater. 2020, 30, 2005401.

[56]

Ding, N.; Zhou, D. L.; Sun, X. K.; Xu, W.; Xu, H. W.; Pan, G. C.; Li, D. Y.; Zhang, S.; Dong, B.; Song, H. W. Highly stable and water-soluble monodisperse CsPbX3/SiO2 nanocomposites for white-LED and cells imaging. Nanotechnology 2018, 29, 345703.

[57]

Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412.

[58]

Lin, J. D.; Lu, Y. X.; Li, X. Y.; Huang, F.; Yang, C. B.; Liu, M. L.; Jiang, N. Z.; Chen, D. Q. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 2021, 6, 519–528.

[59]

Yuan, S.; Chen, D. Q.; Li, X. Y.; Zhong, J. S.; Xu, X. H. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926.

[60]

Nam, Y. H.; Han, K.; Chung, W. J.; Im, W. B. Double encapsulation of CsPbBr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut. ACS Appl. Nano Mater. 2021, 4, 7072–7078.

File
12274_2023_5489_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2022
Revised: 09 January 2023
Accepted: 10 January 2023
Published: 27 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Priority Research Project of Xiamen (No. 3502Z20191015), the Science and Technology Major Project of Fujian Province (No. 2021HZ021013), and the Major Research Project of Mindu Innovation Laboratory (No. 2021ZZ114).

Return