Journal Home > Volume 16 , Issue 5

Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.


menu
Abstract
Full text
Outline
About this article

Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities

Show Author's information Xin Zhao1Xiangtong Meng1,2( )Hongqi Zou1Yanjun Zhang2Yangjun Ma1Yadong Du1Yuan Shao1Jun Qi1Jieshan Qiu1( )
State Key Laboratory of Organic–Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Guangxi key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China

Abstract

Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.

Keywords: nanomaterials, nanochemistry, water activation, solar-driven interfacial evaporation, light/heat management, solar-to-heat conversion

References(225)

[1]

Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. H. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. 2023, 16, 5610–5618.

[2]

Su, X.; Hao, D. Z.; Sun, M. Y.; Wei, T. S.; Xu, D. K.; Ai, X. C.; Guo, X. L.; Zhao, T.; Jiang, L. Nature sunflower stalk pith with zwitterionic hydrogel coating for highly efficient and sustainable solar evaporation. Adv. Funct. Mater. 2022, 32, 2108135.

[3]

Fillet, R.; Nicolas, V.; Fierro, V.; Celzard, A. A review of natural materials for solar evaporation. Sol. Energy Mater. Sol. Cells 2021, 219, 110814.

[4]

Allahbakhsh, A. Nitrogen-doped graphene quantum dots hydrogels for highly efficient solar steam generation. Desalination 2021, 517, 115264.

[5]

Peng, S.; Xu, L. Q.; Deng, S. H.; Mao, Y. F.; Zhao, Z. Y.; Wu, D. L. Non-covalent bond-regulated solar evaporation modulator: Facilitative hydration domains originated via a homogeneous polymeric network. ACS Appl. Mater. Interfaces 2022, 14, 46945–46957.

[6]

Zhao, S. J.; Xia, M. M.; Zhang, Y. H.; Hasi, Q. M.; Xu, J. J.; Chen, L. H. Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater Sol. Cells 2021, 225, 111058.

[7]

Xu, H.; Xing, H. Y.; Chen, S.; Wang, Q.; Dong, L.; Hu, K. D.; Wang, B.; Xue, J. Z.; Lu, Y. Oak-inspired anti-biofouling shape-memory unidirectional scaffolds with stable solar water evaporation performance. Nanoscale 2022, 14, 7493–7501.

[8]

Xu, X. T.; Wan, X. Z.; Li, H. N.; Zhang, Y. K.; He, W.; Wang, S. L.; Wang, M.; Hou, X.; Wang, S. T. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Res. 2022, 15, 5653–5662.

[9]

Li, Y. G.; Sun, K. Y.; Kou, Y.; Liu, H. Q.; Wang, L.; Yin, N.; Dong, H. S.; Shi, Q. One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chem. Eng. J 2022, 429, 132439.

[10]

Li, J. L.; Wang, X. Y.; Lin, Z. H.; Xu, N.; Li, X. Q.; Liang, J.; Zhao, W.; Lin, R. X.; Zhu, B.; Liu, G. L. et al. Over 10 kg·m−2·h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 2020, 4, 928–937.

[11]

Ku, B. J.; Lee, B. M.; Kim, D. H.; Mnoyan, A.; Hong, S. K.; Go, K. S.; Kwon, E. H.; Kim, S. H.; Choi, J. H.; Lee, K. Photothermal fabrics for efficient oil-spill remediation via solar-driven evaporation combined with adsorption. ACS Appl. Mater. Interfaces 2021, 13, 13106–13113.

[12]

Geng, H. Y.; Xu, Q.; Wu, M. M.; Ma, H. Y.; Zhang, P. P.; Gao, T. T.; Qu, L. T.; Ma, T. B.; Li, C. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat. Commun. 2019, 10, 1512.

[13]

Kiriarachchi, H. D.; Awad, F. S.; Hassan, A. A.; Bobb, J. A.; Lin, A.; El-Shall, M. S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale 2018, 10, 18531–18539.

[14]

Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

[15]

Li, Z. Y.; Ma, X.; Chen, D. K.; Wan, X. Y.; Wang, X. B.; Fang, Z.; Peng, X. S. Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination. Adv. Sci. 2021, 8, 2004552.

[16]

Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 2018, 10, 6186–6193.

[17]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[18]

Deng, W.; Fan, T. Z.; Li, Y. Water wave vibration-promoted solar evaporation with super high productivity. Nano Energy 2022, 92, 106745.

[19]

Zhang, X. Y.; Li, T. Y.; Liao, W. L.; Chen, D. Z.; Deng, Z. W.; Liu, X.; Shang, B. A water supply tunable bilayer evaporator for high-quality solar vapor generation. Nanoscale 2022, 14, 7913–7918.

[20]

Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

[21]

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

[22]

Xue, J. L.; Zhao, F.; Hu, C. G.; Zhao, Y.; Luo, H. X.; Dai, L. M.; Qu, L. T. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 2016, 26, 8784–8792.

[23]

Peng, H. Y.; Wang, D.; Fu, S. H. Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS Appl. Mater. Interfaces 2021, 13, 38405–38415.

[24]

Shao, C. X.; Zhao, Y.; Qu, L. T. Tunable graphene systems for water desalination. ChemNanoMat 2020, 6, 1028–1048.

[25]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

[26]

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309.

[27]

Yang, L.; Zou, Y.; Xia, W.; Li, H. T.; He, X. Y.; Zhou, Y.; Liu, X. H.; Zhang, C. Q.; Li, Y. W. Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Res. 2021, 14, 969–975.

[28]

Yang, H.; Sun, Y. H.; Peng, M. W.; Cai, M. J.; Zhao, B.; Li, D.; Liang, Z. Q.; Jiang, L. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity. ACS Nano 2022, 16, 2511–2520.

[29]

Huang, C. H.; Huang, J. X.; Chiao, Y. H.; Chang, C. M.; Hung, W. S.; Lue, S. J.; Wang, C. F.; Hu, C. C.; Lee, K. R.; Pan, H. H. et al. Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 2021, 31, 2010422.

[30]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[31]

Hu, X. Z.; Zhu, J. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv. Funct. Mater. 2020, 30, 1907234.

[32]

Guo, Y. H.; Zhou, X. Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. H. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019, 13, 7913–7919.

[33]

Ishida, N.; Kamae, Y.; Ishizu, K.; Kamino, Y.; Naruse, H.; Murakami, M. Sustainable system for hydrogenation exploiting energy derived from solar light. J. Am. Chem. Soc. 2021, 143, 2217–2220.

[34]

Trinh, V. H.; Nguyen, N. A.; Omelianovych, O.; Dao, V. D.; Yoon, I.; Choi, H. S.; Keidar, M. Sustainable desalination device capable of producing freshwater and electricity. Desalination 2022, 535, 115820.

[35]

He, W.; Zhou, L.; Wang, M.; Cao, Y.; Chen, X. M.; Hou, X. Structure development of carbon-based solar-driven water evaporation systems. Sci. Bull. 2021, 66, 1472–1483.

[36]

Ding, S. J.; Ma, L.; Feng, J. R.; Chen, Y. L.; Yang, D. J.; Wang, Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15, 2715–2721.

[37]

Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376.

[38]

Zhao, X. T.; Wang, T. Y.; Wang, R. X.; Lan, Y. Y.; Jiang, Y. Y.; Pan, J. F. Superwetting photothermal membranes enabled by polyphenol-mediated nanostructured coating with raspberry-like architectures for solar-driven interfacial evaporation. Desalination 2022, 542, 116046.

[39]

Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

[40]

Yan, X. L.; Lyu, S. Z.; Xu, X. Q.; Chen, W. B.; Shang, P. N.; Yang, Z. F.; Zhang, G.; Chen, W. H.; Wang, Y. P.; Chen, L. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation. Angew. Chem., Int. Ed. 2022, 61, e202201900.

[41]

Zhao, F.; Zhou, X. Y.; Liu, Y.; Shi, Y.; Dai, Y. F.; Yu, G. H. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 2019, 31, 1806446.

[42]

Zhou, X. Y.; Zhang, P. P.; Zhao, F.; Yu, G. H. Super moisture absorbent gels for sustainable agriculture via atmospheric water irrigation. ACS Mater. Lett. 2020, 2, 1419–1422.

[43]

Li, X. Q.; Min, X. Z.; Li, J. L.; Xu, N.; Zhu, P. C.; Zhu, B.; Zhu, S. N.; Zhu, J. Storage and recycling of interfacial solar steam enthalpy. Joule 2018, 2, 2477–2484.

[44]

Li, Z. T.; Xu, X. T.; Sheng, X. R.; Lin, P.; Tang, J.; Pan, L. K.; Kaneti, Y. V.; Yang, T.; Yamauchi, Y. Solar-powered sustainable water production: State-of-the-art technologies for sunlight-energy-water nexus. ACS Nano 2021, 15, 12535–12566.

[45]

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

[46]

Wang, L.; Feng, Y. J.; Wang, K. Y.; Liu, G. H. Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 2021, 87, 106158.

[47]

Zhou, X. Y.; Zhao, F.; Zhang, P. P.; Yu, G. H. Solar water evaporation toward water purification and beyond. ACS Mater. Lett. 2021, 3, 1112–1129.

[48]

Peng, Y. Y.; Zhao, W. W.; Ni, F.; Yu, W. J.; Liu, X. Q. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 2021, 15, 19490–19502.

[49]

Zhu, Y. Q.; Tian, G. L.; Liu, Y. W.; Li, H. X.; Zhang, P. C.; Zhan, L.; Gao, R.; Huang, C. Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer. Adv. Sci. 2021, 8, 2101727.

[50]
Ren, J. X.; Ding, Y.; Gong, J.; Qu, J. P.; Niu, R. Simultaneous solar-driven steam and electricity generation by cost-effective, easy scale-up MnO2-based flexible membranes. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12376.
[51]

Li, H. X.; Zhu, W.; Li, M.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 2021, 33, 2102258.

[52]

Qin, D. D.; Zhu, Y. J.; Yang, R. L.; Xiong, Z. C. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale 2020, 12, 6717–6728.

[53]

Wu, Y. T.; Kong, R.; Ma, C. L.; Li, L. Z.; Zheng, Y.; Lu, Y. Z.; Liang, L. L.; Pang, Y. J.; Wu, Q.; Shen, Z. H. et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation. Energy Environ. Mater. 2022, 5, 1323–1331.

[54]

Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718.

[55]

Guo, Y.; Li, C. Q.; Wei, P. L.; Hou, K.; Zhu, M. F. Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification. J. Mater. Sci. Technol. 2022, 106, 10–18.

[56]

Zhao, L. Y.; Wang, L.; Shi, J. D.; Hou, X. Y.; Wang, Q.; Zhang, Y.; Wang, Y.; Bai, N. N.; Yang, J. L.; Zhang, J. M. et al. Shape-programmable interfacial solar evaporator with salt-precipitation monitoring function. ACS Nano 2021, 15, 5752–5761.

[57]

Irshad, M. S.; Wang, X. B.; Abbasi, M. S.; Arshad, N.; Chen, Z. H.; Guo, Z. Z.; Yu, L.; Qian, J. W.; You, J.; Mei, T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem. Eng. 2021, 9, 3887–3900.

[58]

Liu, G. H.; Xu, J. L.; Wang, K. Y. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269–284.

[59]

Li, F. B.; Li, N.; Wang, S. X.; Qiao, L. F.; Yu, L. M.; Murto, P.; Xu, X. F. Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 2021, 31, 2104464.

[60]

Bai, H. Y.; Liu, N.; Hao, L.; He, P. P.; Ma, C. D.; Niu, R.; Gong, J.; Tang, T. Self-floating efficient solar steam generators constructed using super-hydrophilic N, O dual-doped carbon foams from waste polyester. Energy Environ. Mater. 2022, 5, 1204–1213.

[61]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[62]

Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

[63]

Wang, A. H.; Liang, H. G.; Chen, F.; Tian, X. L.; Yin, S. B.; Jing, S. Y.; Tsiakaras, P. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B:Environ. 2022, 310, 121336.

[64]

Wang, W.; Yan, X. Q.; Geng, J. F.; Zhao, N.; Liu, L. Q.; Vogel, T.; Guo, Q.; Ge, L.; Luo, B.; Zhao, Y. X. Engineering a copper@polypyrrole nanowire network in the near field for plasmon-enhanced solar evaporation. ACS Nano 2021, 15, 16376–16394.

[65]

Wang, Z. G.; Yu, K.; Gong, S. J.; Mao, H. B.; Huang, R.; Zhu, Z. Q. Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 2021, 13, 16246–16258.

[66]

Meng, X. Y.; Xu, W. L.; Li, Z. H.; Yang, J. H.; Zhao, J. W.; Zou, X. X.; Sun, Y. M.; Dai, Y. Q. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2020, 2, 93–104.

[67]

Chen, G. Y.; Jiang, Z. P.; Li, A.; Chen, X. H.; Ma, Z. K.; Song, H. H. Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. J. Mater. Chem. A 2021, 9, 16805–16813.

[68]

Xiao, J. X.; Guo, Y.; Luo, W. Q.; Wang, D.; Zhong, S. K.; Yue, Y. R.; Han, C. N.; Lv, R. X.; Feng, J. B.; Wang, J. Q. et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continuous solar steam generation. Nano Energy 2021, 87, 106213.

[69]

Chen, X. B.; Li, P.; Wang, J.; Wan, J. W.; Yang, N. L.; Xu, B.; Tong, L. M.; Gu, L.; Du, J.; Lin, J. J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 2022, 15, 4117–4123.

[70]

Chen, R.; Wu, Z. J.; Zhang, T. Q.; Yu, T. C.; Ye, M. M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Adv. 2017, 7, 19849–19855.

[71]

Liu, J.; Gui, J. X.; Zhou, W. T.; Tian, X. L.; Liu, Z. X.; Wang, J. Q.; Liu, J.; Yang, L.; Zhang, P.; Huang, W. et al. Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 2021, 86, 106112.

[72]

Li, H. N.; Yang, H. C.; Zhu, C. Y.; Wu, J.; Greiner, A.; Xu, Z. K. A self-descaling Janus nanofibrous evaporator enabled by a “moving interface” for durable solar-driven desalination of hypersaline water. J. Mater. Chem. A 2022, 10, 20856–20865.

[73]

Irshad, M. S.; Wang, X. B.; Abbas, A.; Yu, F.; Li, J. H.; Wang, J. Y.; Mei, T.; Qian, J. W.; Wu, S. L.; Javed, M. Q. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon 2021, 176, 313–326.

[74]

Dao, V. D.; Vu, N. H.; Thi Dang, H. L.; Yun, S. N. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021, 85, 105979.

[75]

Su, L. F.; Ning, Y. Y.; Ma, Z. Q.; Zhang, Y. H.; Liu, C. L.; Zhang, Y. L.; Miao, L.; Zhou, J. H.; Wu, B.; Qian, J. S. Polypyrrole-reinforced N, S-doping graphene foam for efficient solar purification of wastewater. Sol. RRL 2021, 5, 2100210.

[76]

Li, C. C.; Zhu, B.; Liu, Z. X.; Zhao, J. T.; Meng, R. R.; Zhang, L. S.; Chen, Z. G. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 2022, 431, 134224.

[77]

Xiong, H.; Xie, X. W.; Wang, M.; Hou, Y. Q.; Hou, X. CVD grown carbon nanotubes on reticulated skeleton for brine desalination. Acta Phys. -Chim. Sin. 2020, 36, 1912008.

[78]

Arunkumar, T.; Lim, H. W.; Lee, S. J. A review on efficiently integrated passive distillation systems for active solar steam evaporation. Renew. Sust. Energy Rev. 2022, 155, 111894.

[79]

Zhang, P. P.; Liu, F.; Liao, Q. H.; Yao, H. Z.; Geng, H. Y.; Cheng, H. H.; Li, C.; Qu, L. T. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem., Int. Ed. 2018, 57, 16343–16347.

[80]

Wang, X. Y.; Li, X. Q.; Liu, G. L.; Li, J. L.; Hu, X. Z.; Xu, N.; Zhao, W.; Zhu, B.; Zhu, J. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem., Int. Ed. 2019, 58, 12054–12058.

[81]

Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B:Environ. 2022, 301, 120820.

[82]

Li, X. P.; Li, X. F.; Li, H. G.; Zhao, Y.; Wu, J.; Yan, S. K.; Yu, Z. Z. Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification. Adv. Funct. Mater. 2022, 32, 2110636.

[83]

Irshad, M. S.; Arshad, N.; Wang, X. B.; Li, H. R.; Javed, M. Q.; Xu, Y.; Alshahrani, L. A.; Mei, T.; Li, J. H. Intensifying solar interfacial heat accumulation for clean water generation excluding heavy metal ions and oil emulsions. Sol. RRL 2021, 5, 2100427.

[84]

Yang, L.; Li, N.; Guo, C.; He, J. T.; Wang, S. X.; Qiao, L. F.; Li, F. B.; Yu, L. M.; Wang, M.; Xu, X. F. Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chem. Eng. J. 2021, 417, 128051.

[85]

Dao, V. D.; Vu, N. H.; Yun, S. N. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324.

[86]

Dao, V. D.; Choi, H. S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2018, 2, 1700094.

[87]

Guan, W. X.; Guo, Y. H.; Yu, G. H. Carbon materials for solar water evaporation and desalination. Small 2021, 17, 2007176.

[88]

Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core–shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

[89]

Wang, L. F.; Liu, D.; Jiang, L.; Ma, Y. X.; Yang, G. L.; Qian, Y. J.; Lei, W. W. Advanced 2D–2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano Energy 2022, 98, 107192.

[90]

Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 2015, 119, 25518–25528.

[91]

McMahon, J. M.; Schatz, G. C.; Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423.

[92]

Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805.

[93]

Magnan, F.; Gagnon, J.; Fontaine, F. G.; Boudreau, D. Indium@silica core–shell nanoparticles as plasmonic enhancers of molecular luminescence in the UV region. Chem. Commun. 2013, 49, 9299–9301.

[94]

Kumamoto, Y.; Taguchi, A.; Honda, M.; Watanabe, K.; Saito, Y.; Kawata, S. Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photonics 2014, 1, 598–603.

[95]

Liang, J.; Liu, H. Z.; Yu, J. Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019, 8, 771–786.

[96]

Zhou, L.; Zhuang, S. D.; He, C. Y.; Tan, Y. L.; Wang, Z. L.; Zhu, J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 2017, 32, 195–200.

[97]

Chen, C. L.; Zhou, L.; Yu, J. Y.; Wang, Y. X.; Nie, S. M.; Zhu, S. N.; Zhu, J. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 2018, 51, 451–456.

[98]

Yu, J. Y.; Zhou, L.; Wang, Y.; Tan, Y. L.; Wang, Z. L.; Zhu, S. N.; Zhu, J. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis. J. Opt. 2018, 20, 034005.

[99]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

[100]

Zhu, J.; Li, J. J.; Zhao, J. W. The effect of dielectric coating on the local electric field enhancement of Au-Ag core–shell nanoparticles. Plasmonics 2015, 10, 1–8.

[101]

Yang, F.; Chen, J. X.; Ye, Z. Y.; Ding, D. W.; Myung, N. V.; Yin, Y. D. Ni-based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation. Adv. Funct. Mater. 2021, 31, 2006294.

[102]

Yuan, Y.; Dong, C. L.; Gu, J. J.; Liu, Q. L.; Xu, J.; Zhou, C. X.; Song, G. F.; Chen, W. S.; Yao, L. L.; Zhang, D. A scalable nickel-cellulose hybrid metamaterial with broadband light absorption for efficient solar distillation. Adv. Mater. 2020, 32, 1907975.

[103]

Li, W. H.; Zamani, R.; Gil, P. R.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R. A.; Parak, W. J.; Arbiol, J. et al. CuTe nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 2013, 135, 7098–7101.

[104]

Gao, M. M.; Peh, C. K.; Phan, H. T.; Zhu, L. L.; Ho, G. W. Solar absorber gel: Localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energy Mater. 2018, 8, 1800711.

[105]

Coulter, J. B.; Birnie III, D. P. Assessing tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi (B) 2018, 255, 1700393.

[106]

Shao, S. Y.; Abdu-Aguye, M.; Qiu, L.; Lai, L. H.; Liu, J.; Adjokatse, S.; Jahani, F.; Kamminga, M. E.; ten Brink, G. H.; Palstra, T. T. M. et al. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative. Energy Environ. Sci. 2016, 9, 2444–2452.

[107]

Zeiske, S.; Sandberg, O. J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat. Commun. 2021, 12, 3603.

[108]

Sun, L.; Sun, J. X.; Xiong, C. H.; Shi, X. H. Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility. Sol. Energy 2016, 135, 308–316.

[109]

Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C. Absorption coefficient of a semiconductor thin film from photoluminescence. Phys. Rev. Appl. 2018, 9, 064008.

[110]

Huang, D. L.; Yan, X. L.; Yan, M.; Zeng, G. M.; Zhou, C. Y.; Wan, J.; Cheng, M.; Xue, W. J. Graphitic carbon nitride-based heterojunction photoactive nanocomposites: Applications and mechanism insight. ACS Appl. Mater. Interfaces 2018, 10, 21035–21055.

[111]

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

[112]

Ye, M. M.; Jia, J.; Wu, Z. J.; Qian, C. X.; Chen, R.; O’Brien, P. G.; Sun, W.; Dong, Y. C.; Ozi, G. A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 2017, 7, 1601811.

[113]

Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600–608.

[114]

Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

[115]

Feng, Q.; Bu, X. T.; Wan, Z. M.; Feng, K. Y.; Deng, Q. Y.; Chen, C. C.; Li, D. G. An efficient torrefaction bamboo-based evaporator in interfacial solar steam generation. Sol. Energy 2021, 230, 1095–1105.

[116]

Fan, Y. K.; Tian, Z. Y.; Wang, F.; He, J. X.; Ye, X. Y.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Enhanced solar-to-heat efficiency of photothermal materials containing an additional light-reflection layer for solar-driven interfacial water evaporation. ACS Appl. Energy Mater. 2021, 4, 2932–2943.

[117]

Dong, W. C.; Wang, Y. C.; Zhang, Y. J.; Song, X. J.; Peng, H.; Jiang, H. Q. Bilayer rGO-based photothermal evaporator for efficient solar-driven water purification. Chem. —Eur. J. 2021, 27, 17428–17436.

[118]

Djellabi, R.; Noureen, L.; Dao, V. D.; Meroni, D.; Falletta, E.; Dionysiou, D. D.; Bianchi, C. L. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chem. Eng. J. 2022, 431, 134024.

[119]

Dao, V. D.; Vu, N. H.; Choi, H. S. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power Sources 2020, 448, 227388.

[120]

Cui, Y. Y.; Liu, J.; Li, Z. Q.; Ji, M. Y.; Zhao, M.; Shen, M. H.; Han, X.; Jia, T.; Li, C. L.; Wang, Y. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation. Adv. Funct. Mater. 2021, 31, 2106247.

[121]

Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.

[122]

Chiavazzo, E. Critical aspects to enable viable solar-driven evaporative technologies for water treatment. Nat. Commun. 2022, 13, 5813.

[123]

Chen, G. Y.; Sun, J. M.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y. J.; Gu, X. G.; Shuai, Z. G.; Tang, B. Z. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation. Adv. Mater. 2020, 32, 1908537.

[124]

Su, Y.; Chen, Z. X.; Tang, X. H.; Xu, H.; Zhang, Y. J.; Gu, C. Design of persistent and stable porous radical polymers by electronic isolation strategy. Angew. Chem., Int. Ed. 2021, 60, 24424–24429.

[125]

Wang, Z. X.; Han, M. C.; He, F.; Peng, S. Q.; Darling, S. B.; Li, Y. X. Versatile coating with multifunctional performance for solar steam generation. Nano Energy 2020, 74, 104886.

[126]

Chen, X.; Zhu, X. B.; He, S. M.; Hu, L. B.; Ren, Z. J. Advanced nanowood materials for the water-energy nexus. Adv. Mater. 2021, 33, 2001240.

[127]

Chen, L. Y.; Li, D. Z.; Wang, Y. X.; Duan, C. Y. Highly efficient solar steam generation of supported metal–organic framework membranes by a photoinduced electron transfer process. Nanoscale 2019, 11, 11121–11127.

[128]

Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2022, 34, 2107400.

[129]

Chen, G. G.; Li, T.; Chen, C. J.; Wang, C. W.; Liu, Y.; Kong, W. Q.; Liu, D. P.; Jiang, B.; He, S. M.; Kuang, Y. D. et al. A highly conductive cationic wood membrane. Adv. Funct. Mater. 2019, 29, 1902772.

[130]

Chen, F. J.; Gong, A. S.; Zhu, M. W.; Chen, G.; Lacey, S. D.; Jiang, F.; Li, Y. F.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G. et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 2017, 11, 4275–4282.

[131]

Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

[132]

Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

[133]

Hou, Y. Q.; Wang, Q. X.; Wang, S. L.; Wang, M.; Chen, X. M.; Hou, X. Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination. Chin. Chem. Lett. 2022, 33, 2155–2158.

[134]

Zhu, G. S.; Jing, G. X.; Xu, G. R.; Li, Q.; Huang, R. J.; Li, F.; Li, H. X.; Wang, D.; Chen, W. W.; Tang, B. Z. A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Res. 2022, 15, 6705–6712.

[135]

Song, C. Y.; Irshad, M. S.; Jin, Y.; Hu, J. H.; Liu, W. T. Arabic-dome-inspired hierarchical design for stable and high-efficiency solar-driven seawater desalination. Desalination 2022, 544, 116125.

[136]

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

[137]

Xiao, Q. B.; Zhu, Y.; Xi, Y. L.; Kong, X. P.; Ye, X. M.; Zhang, Z. Y.; Qiu, C. P.; Xu, W. L.; Cheng, S.; Zhang, J. et al. Highly charged hydrogel with enhanced donnan exclusion toward ammonium for efficient solar-driven water remediation. Chem. Eng. J. 2022, 430, 133019.

[138]

Zhang, L. J.; Bai, B.; Hu, N.; Wang, H. L. Low-cost and facile fabrication of a candle soot/adsorbent cotton 3D-interfacial solar steam generation for effective water evaporation. Sol. Energy Mater. Sol. Cells 2021, 221, 110876.

[139]

Meng, T. T.; Jiang, B.; Li, Z. T.; Xu, X. T.; Li, D. G.; Henzie, J.; Nanjundan, A. K.; Yamauchi, Y.; Bando, Y. Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy 2021, 87, 106146.

[140]

Geng, Y.; Jiao, K.; Liu, X.; Ying, P. J.; Odunmbaku, O.; Zhang, Y. X.; Tan, S. C.; Li, L.; Zhang, W.; Li, M. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Res. 2022, 15, 3122–3142.

[141]

Zou, H. Q.; Meng, X. T.; Zhao, X.; Qiu, J. S. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 2022, 2207262.

[142]

Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

[143]

Guo, Y. H.; Zhao, X.; Zhao, F.; Jiao, Z. H.; Zhou, X. Y.; Yu, G. H. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 2020, 13, 2087–2095.

[144]

Yang, Q.; Sun, P. Z.; Fumagalli, L.; Stebunov, Y. V.; Haigh, S. J.; Zhou, Z. W.; Grigorieva, I. V.; Wang, F. C.; Geim, A. K. Capillary condensation under atomic-scale confinement. Nature 2020, 588, 250–253.

[145]

Roldughin, V. I.; Kharitonova, T. V. The mechanism of action and place of application of capillary forces. Colloid J. 2017, 79, 540–548.

[146]

Lockington, D. A.; Parlange, J. Y. A new equation for macroscopic description of capillary rise in porous media. J. Colloid Interface Sci. 2004, 278, 404–409.

[147]

Chaule, S.; Hwang, J.; Ha, S. J.; Kang, J. H.; Yoon, J. C.; Jang, J. H. Rational design of a high performance and robust solar evaporator via 3D-printing technology. Adv. Mater. 2021, 33, 2102649.

[148]

Bu, Y. M.; Zhou, Y. H.; Lei, W. W.; Ren, L. P.; Xiao, J. F.; Yang, H. J.; Xu, W. L.; Li, J. L. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation. J. Mater. Chem. A 2022, 10, 2856–2866.

[149]

Arunkumar, T.; Kabeel, A. E.; Raj, K.; Denkenberger, D.; Sathyamurthy, R.; Ragupathy, P.; Velraj, R. Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. J. Clean. Prod. 2018, 195, 1149–1161.

[150]

Alosaimi, F. K.; Tung, T. T.; Dao, V. D.; Huyen, N. K.; Nine, J.; Hassan, K.; Ma, J.; Losic, D. Graphene-based multifunctional surface and structure gradients engineered by atmospheric plasma. Appl. Mater. Today 2022, 27, 101486.

[151]

Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

[152]

Liang, Y. J.; Kim, S.; Kallem, P.; Choi, H. Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation. Chemosphere 2019, 221, 479–485.

[153]

Deroche, I.; Daou, T. J.; Picard, C.; Coasne, B. Reminiscent capillarity in subnanopores. Nat. Commun. 2019, 10, 4642.

[154]

Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

[155]

Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. A 2019, 7, 14620–14628.

[156]

Chen, Q.; Zhao, J.; Cheng, H. H.; Qu, L. T. Progress in 3D-graphene assemblies preparation for solar-thermal steam generation and water treatment. Acta Phys. -Chim. Sin. 2022, 38, 2101020.

[157]

Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498.

[158]

Zhang, H. M.; Shen, X.; Kim, E.; Wang, M. Y.; Lee, J. H.; Chen, H. M.; Zhang, G. C.; Kim, J. K. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 2022, 32, 2111794.

[159]

Wang, Z. X.; Wu, X. C.; He, F.; Peng, S. Q.; Li, Y. X. Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 2021, 31, 2011114.

[160]

Chen, C. J.; Liu, H. Y.; Wang, H. T.; Zhao, Y. W.; Li, M. A scalable broadband plasmonic cuprous telluride nanowire-based hybrid photothermal membrane for efficient solar vapor generation. Nano Energy 2021, 84, 105868.

[161]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

[162]

Zhou, H. Y.; Xue, C. R.; Chang, Q.; Yang, J. L.; Hu, S. L. Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chem. Eng. J. 2021, 421, 129822.

[163]

Liu, H. W.; Jin, R. Z.; Duan, S. C.; Ju, Y. J.; Wang, Z. Y.; Yang, K.; Wang, B. D.; Wang, B.; Yao, Y. G.; Chen, F. J. Anisotropic evaporator with a T-shape design for high-performance solar-driven zero-liquid discharge. Small 2021, 17, 2100969.

[164]

Li, N.; Qiao, L. F.; He, J. T.; Wang, S. X.; Yu, L. M.; Murto, P.; Li, X. Y.; Xu, X. F. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 2021, 31, 2008681.

[165]

Wang, L. F.; Shang, J.; Yang, G. L.; Ma, Y. X.; Kou, L. Z.; Liu, D.; Yin, H. Y.; Hegh, D.; Razal, J.; Lei, W. W. 2D higher-metal nitride nanosheets for solar steam generation. Small 2022, 18, 2201770.

[166]

Fang, Q. L.; Li, T. T.; Lin, H. B.; Jiang, R. R.; Liu, F. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl. Energy Mater. 2019, 2, 4354–4361.

[167]

Sheng, M. H.; Yang, Y. W.; Bin, X. Q.; Zhao, S. H.; Pan, C.; Nawaz, F.; Que, W. X. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468.

[168]

Zhao, H. Y.; Huang, J.; Zhou, J.; Chen, L. F.; Wang, C. M.; Bai, Y. X.; Zhou, J.; Deng, Y.; Dong, W. X.; Li, Y. S. et al. Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 2022, 16, 3554–3562.

[169]

Guo, Y. H.; Lu, H. Y.; Zhao, F.; Zhou, X. Y.; Shi, W.; Yu, G. H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

[170]

Su, J. W.; Chang, Q.; Xue, C. R.; Yang, J. L.; Hu, S. L. Electrochemical oxidation reconstructs graphene oxides on sponge for unprecedentedly high solar water evaporation. Carbon 2022, 194, 267–273.

[171]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

[172]

Qiao, H. T.; Zhao, B. W.; Suo, X. D.; Xie, X. M.; Dang, L. F.; Yang, J.; Zhang, B. W. The biochar derived from carp for high-efficiency solar steam generation and water purification. Glob. Chall. 2022, 6, 2100083.

[173]

Xu, Y. L.; Lv, B. W.; Yang, Y.; Fan, X. F.; Yu, Y. L.; Song, C. W.; Liu, Y. M. Facile fabrication of low-cost starch-based biohydrogel evaporator for efficient solar steam generation. Desalination 2021, 517, 115260.

[174]

Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. X.; Li, J. L.; Zhu, S. N.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77.

[175]

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

[176]

Qiao, L. F.; Li, N.; Luo, L.; He, J. T.; Lin, Y. X.; Li, J. J.; Yu, L. M.; Guo, C.; Murto, P.; Xu, X. F. Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J. Mater. Chem. A 2021, 9, 9692–9705.

[177]

Li, N.; Luo, L.; Guo, C.; He, J. T.; Wang, S. X.; Yu, L. M.; Wang, M.; Murto, P.; Xu, X. F. Shape-controlled fabrication of cost-effective, scalable and anti-biofouling hydrogel foams for solar-powered clean water production. Chem. Eng. J. 2022, 431, 134144.

[178]

Liu, X. H.; Liu, Z. C.; Devadutta Mishra, D.; Chen, Z. H.; Zhao, J.; Hu, C. Q. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow. Chem. Eng. J. 2022, 429, 132335.

[179]

Xu, Z. C.; Ran, X. Q.; Wang, D.; Zhong, M. F.; Zhang, Z. J. High efficient 3D solar interfacial evaporator: Achieved by the synergy of simple material and structure. Desalination 2022, 525, 115495.

[180]

Song, J. W.; Chen, C. J.; Yang, Z.; Kuang, Y. D.; Li, T.; Li, Y. J.; Huang, H.; Kierzewski, I.; Liu, B. Y.; He, S. M. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147.

[181]

Meng, S.; Zha, X. J.; Wu, C.; Zhao, X.; Yang, M. B.; Yang, W. Interfacial radiation-absorbing hydrogel film for efficient thermal utilization on solar evaporator surfaces. Nano Lett. 2021, 21, 10516–10524.

[182]

Liang, X. C.; Zhang, X. J.; Liu, Z. P.; Huang, Q. C.; Zhang, H.; Liu, C. K.; Liu, Y. Z. Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation. Sol. Energy 2020, 201, 581–588.

[183]

Saleque, A. M.; Ahmed, S.; Ivan, N. A. S.; Hossain, M. I.; Qarony, W.; Cheng, P. K.; Qiao, J. P.; Guo, Z. L.; Zeng, L. H.; Tsang, Y. H. High-temperature solar steam generation by MWCNT-HfTe2 van der Waals heterostructure for low-cost sterilization. Nano Energy 2022, 94, 106916.

[184]

Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

[185]

Li, Y. L.; Shi, X. L.; Sun, L. J.; Zhao, M. Y.; Jiang, T.; Jiang, W. C.; Deng, M. Y.; Yang, S. G.; Wang, Y. Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation. Desalination 2021, 515, 115192.

[186]

Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

[187]

Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

[188]

Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

[189]

Qiao, L. F.; Li, S.; Li, N.; Wang, S. X.; Wang, C. F.; Meng, X. C.; Murto, P.; Xu, X. F. Fabrication of monopile polymer foams via rotating gas foaming: Hybrid applications in solar-powered interfacial evaporation and water remediation. Sol. RRL 2022, 6, 2200241.

[190]

Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

[191]

Yu, F.; Wang, J. X.; Yan, L.; Guo, Z. Z.; Chen, Z. H.; Irshad, M. S.; Qian, J. W.; Mei, T.; Wang, X. B. Bio-inspired molybdenum carbide/carbon-based aerogel with advanced thermal management as a solar evaporator. Sol. Energy Mater. Sol. Cells 2022, 243, 111738.

[192]

Sun, X. S.; Jia, X. H.; Yang, J.; Wang, S. Z.; Li, Y.; Shao, D.; Song, H. J. Bamboo fiber-reinforced chitosan sponge as a robust photothermal evaporator for efficient solar vapor generation. J. Mater. Chem. A 2021, 9, 23891–23901.

[193]

Guo, Y. H.; de Vasconcelos, L. S.; Manohar, N.; Geng, J. F.; Johnston, K. P.; Yu, G. H. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem., Int. Ed. 2022, 61, e202114074.

[194]

Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A bioinspired elastic hydrogel for solar-driven water purification. Adv. Mater. 2021, 33, 2007833.

[195]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[196]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253.

[197]

Zhang, R.; Xiang, B.; Wang, Y. T.; Tang, S. C.; Meng, X. K. A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Mater. Horiz. 2022, 9, 1232–1242.

[198]

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

[199]

Zhu, F. B.; Wang, L. Q.; Demir, B.; An, M.; Wu, Z. L.; Yin, J.; Xiao, R.; Zheng, Q.; Qian, J. Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Mater. Horiz. 2020, 7, 3187–3195.

[200]

Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041–19046.

[201]

Yu, Z.; Gu, R. N.; Tian, Y.; Xie, P. F.; Jin, B. C.; Cheng, S. A. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 2022, 32, 2108586.

[202]

Ma, C.; Liu, Q. L.; Peng, Q. Q.; Yang, G. H.; Jiang, M.; Zong, L.; Zhang, J. M. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices. ACS Nano 2021, 15, 19877–19887.

[203]

Fang, Z. X.; Lin, Y. H.; Zheng, J. J.; Yan, J. F.; Wang, W. W.; Zheng, W. G.; Pang, G. S. Highly efficient solar distiller integrated with photothermal membrane, superhydrophilic glass, and superhydrophobic heat sink. Sustain. Energy Technol. Assess. 2022, 53, 102517.

[204]

Srivastava, P. K.; Agrawal, S. K. Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers. Desalination 2013, 311, 198–205.

[205]

Zhang, B. P.; Gu, Q. F.; Wang, C.; Gao, Q. L.; Guo, J. X.; Wong, P. W.; Liu, C. T.; An, A. K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770.

[206]

Ouyang, X.; Wu, P.; Deng, J. S.; Ma, Q. L.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Wang, J. X.; Liu, L. Flexible solar absorber using hydrophile/hydrophobe amphipathic Janus nanofiber as building unit for efficient vapor generation. Sep. Purif. Technol. 2022, 297, 121526.

[207]

Zhang, S. Q.; Wei, H.; Zhang, Z. J.; Zhang, J. Z.; Bao, H.; Zhang, W. A bioinspired solar evaporator with a horizontal channel-like framework for efficient and stable high-salinity brine desalination. Nanoscale 2022, 14, 6066–6074.

[208]

Lu, Y.; Wang, X.; Fan, D. Q.; Yang, H.; Xu, H. L.; Min, H. H.; Yang, X. F. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain. Mater. Technol. 2020, 25, e00180.

[209]

Zhang, Q.; Yi, G.; Fu, Z.; Yu, H. T.; Chen, S.; Quan, X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207.

[210]

He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

[211]

Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

[212]

Hu, C. Z.; Liu, Z. T.; Lu, X. L.; Sun, J. Q.; Liu, H. J.; Qu, J. H. Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane. J. Mater. Chem. A 2018, 6, 4737–4745.

[213]

Xiao, C. H.; Liang, W. D.; Chen, L. H.; He, J. X.; Liu, F.; Sun, H. X.; Zhu, Z. Q.; Li, A. Janus poly(ionic liquid) monolithic photothermal materials with superior salt-rejection for efficient solar steam generation. ACS Appl. Energy Mater. 2019, 2, 8862–8870.

[214]

Wang, F.; Su, Y. N.; Li, Y. Z.; Wei, D. Y.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 2020, 3, 8746–8754.

[215]

Liu, C. K.; Cai, C. J.; Ma, F. Q.; Zhao, X. Z.; Ahmad, H. Accelerated solar steam generation for efficient ions removal. J. Colloid Interface Sci. 2020, 560, 103–110.

[216]

Zeng, J.; Wang, Q. Y.; Shi, Y.; Liu, P.; Chen, R. K. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 2019, 9, 1900552.

[217]

Zhao, W.; Gong, H.; Song, Y.; Li, B.; Xu, N.; Min, X. Z.; Liu, G. L.; Zhu, B.; Zhou, L.; Zhang, X. X. et al. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 2021, 31, 2100025.

[218]

Wu, L.; Dong, Z. C.; Cai, Z. R.; Ganapathy, T.; Fang, N. X.; Li, C. X.; Yu, C. L.; Zhang, Y.; Song, Y. L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 2020, 11, 521.

[219]

Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

[220]

Li, J. J.; Li, N.; Wu, X. C.; Wang, S. X.; Li, S.; Guo, C.; Yu, L. M.; Wang, Z. H.; Murto, P.; Xu, X. F. Photothermal aerogel beads based on polysaccharides: Controlled fabrication and hybrid applications in solar-powered interfacial evaporation, water remediation, and soil enrichment. ACS Appl. Mater. Interfaces 2022, 14, 50266–50279.

[221]

Meng, F. L.; Gao, M. M.; Ding, T. P.; Yilmaz, G.; Ong, W. L.; Ho, G. W. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv. Funct. Mater. 2020, 30, 2002867.

[222]

Liu, H.; Ye, H. G.; Gao, M. M.; Li, Q.; Liu, Z. W.; Xie, A. Q.; Zhu, L. L.; Ho, G. W.; Chen, S. Conformal microfluidic-blow-spun 3D photothermal catalytic spherical evaporator for omnidirectional enhanced solar steam generation and CO2 reduction. Adv. Sci. 2021, 8, 2101232.

[223]

Qi, D. P.; Liu, Y.; Liu, Y. B.; Liu, Z. Y.; Luo, Y. F.; Xu, H. B.; Zhou, X.; Zhang, J. J.; Yang, H.; Wang, W. et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 2020, 32, 2004401.

[224]

Zhang, P. P.; Zhao, F.; Shi, W.; Lu, H. Y.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv. Mater. 2022, 34, 2110548.

[225]

Peng, Y. B.; Wei, X.; Wang, Y. J.; Li, W. W.; Zhang, S. X.; Jin, J. Metal–organic framework composite photothermal membrane for removal of high-concentration volatile organic compounds from water via molecular sieving. ACS Nano 2022, 16, 8329–8337.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 October 2022
Revised: 05 January 2023
Accepted: 11 January 2023
Published: 22 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China (Nos. buctrc201929 and buctrc202029), the National Natural Science Foundation of China (Nos. 52002014 and U2003216), the Natural Science Foundation of Guangxi Province (No. 2021GXNSFAA220018), and the State Key Laboratory of Fine Chemicals (No. KF2009).

Return