AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection

Tongyu Shi1,2,§Wenjun Liu1,3,§Jiongtao Zhu1Xiongsheng Fan1Zhengyu Zhang1Xingchen He1Rui He1Jiahong Wang1,2Kezhen Chen1,2Yongshuai Ge1,2Xiangming Sun4Yanliang Liu1,2( )Paul K. Chu5Xue-Feng Yu1,2( )
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
University of Chinese Academy of Sciences, Beijing 100049, China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China
Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China

§ Tongyu Shi and Wenjun Liu contributed equally to this work.

Show Author Information

Graphical Abstract

A solvent-based approach is designed and demonstrated to produce CsPbBr3 micro-bricks for compact microcrystalline perovskite wafers for X-ray detectors. The direct X-ray detector with the structure of Au/perovskite/[6,6]-phenyl C61 butyric acid methyl (PCBM)/Au shows a high sensitivity of 14,430 µC·Gyair−1·cm−2 and low detection limit of 564 nGyair·s−1.

Abstract

Inorganic perovskite wafers with good stability and adjustable sizes are promising in X-ray detection but the high synthetic temperature is a hindrance. Herein, dimethyl sulfoxide (DMSO) is used to prepare the CsPbBr3 micro-bricks powder at room temperature. The CsPbBr3 powder has a cubic shape with few crystal defects, small charge trap density, and high crystallinity. A trace amount of DMSO attaches to the surface of the CsPbBr3 micro-bricks via Pb–O bonding, forming the CsPbBr3-DMSO adduct. During hot isostatic processing, the released DMSO vapor merges the CsPbBr3 micro-bricks, producing a compact and dense CsPbBr3 wafer with minimized grain boundaries and excellent charge transport properties. The CsPbBr3 wafer shows a large mobility-lifetime (μτ) product of 5.16 × 10-4 cm2·V−1, high sensitivity of 14,430 µC·Gyair−1·cm−2, low detection limit of 564 nGyair·s−1, as well as robust stability in X-ray detection. The results reveal a novel strategy with immense practical potential pertaining to high-contrast X-ray detection.

Electronic Supplementary Material

Download File(s)
12274_2023_5487_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Ozturk, T.; Talo, M.; Yildirim, E. A.; Baloglu, U. B.; Yildirim, O.; Acharya, U. R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792.

[2]

Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 2010, 4, 840–848.

[3]

Casalta, S.; Daquino, G. G.; Metten, L.; Oudaert, J.; Van De Sande, A. Digital image analysis of X-ray and neutron radiography for the inspection and the monitoring of nuclear materials. NDT & E Int. 2003, 36, 349–355.

[4]

Zhou, F. G.; Li, Z. Z.; Lan, W.; Wang, Q.; Ding, L. M.; Jin, Z. W. Halide perovskite, a potential scintillator for X-ray detection. Small Methods 2020, 4, 2000506.

[5]

Li, Z. Z.; Zhou, F. G.; Yao, H. H.; Ci, Z.; Yang, Z.; Jin, Z. W. Halide perovskites for high-performance X-ray detector. Mater. Today 2021, 48, 155–175.

[6]

Kasap, S. O. X-ray sensitivity of photoconductors: Application to stabilized a-Se. J. Phys. D Appl. Phys. 2000, 33, 2853–2865.

[7]

Street, R. A.; Ready, S. E.; Lemmi, F.; Shah, K. S.; Bennett, P.; Dmitriyev, Y. Electronic transport in polycrystalline PbI2 films. J. Appl. Phys. 1999, 86, 2660–2667.

[8]

Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832.

[9]

Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.

[10]

Leguy, A. M. A.; Frost, J. M.; McMahon, A. P.; Sakai, V. G.; Kockelmann, W.; Law, C.; Li, X. E.; Foglia, F.; Walsh, A.; O’Regan, B. C. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat. Commun. 2015, 6, 7124.

[11]

Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.

[12]

Wang, C.; Xiao, J. W.; Yan, Z. G.; Niu, X. W.; Lin, T. F.; Zhou, Y. C.; Li, J. Y.; Han, X. D. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Res. 2023, 16, 1703–1711.

[13]

Dierks, H.; Zhang, Z. J.; Lamers, N.; Wallentin, J. 3D X-ray microscopy with a CsPbBr3 nanowire scintillator. Nano Res. 2023, 16, 1084–1089.

[14]

Zhang, H. J.; Wang, F. B.; Lu, Y. F.; Sun, Q. H.; Xu, Y. D.; Zhang, B. B.; Jie, W.; Kanatzidis, M. G. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. J. Mater. Chem. C 2020, 8, 1248–1256.

[15]

Li, W. J.; Li, H. Y.; Song, J. M.; Guo, C. J.; Zhang, H. M.; Wei, H. T.; Yang, B. Fine-control-valve of halide perovskite single crystal quality for high performance X-ray detection. Sci. Bull. 2021, 66, 2199–2206.

[16]

Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z. F.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722–2727.

[17]

Peng, J. L.; Xia, C. Q.; Xu, Y. L.; Li, R. M.; Cui, L. H.; Clegg, J. K.; Herz, L. M.; Johnston, M. B.; Lin, Q. Q. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 2021, 12, 1531.

[18]

Di, J. Y.; Li, H. J.; Su, J.; Yuan, H. D.; Lin, Z. H.; Zhao, K.; Chang, J. J.; Hao, Y. Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector. Adv. Sci. 2022, 9, 2103482.

[19]

Ding, J. X.; Du, S. J.; Zuo, Z. Y.; Zhao, Y.; Cui, H. Z.; Zhan, X. Y. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C 2017, 121, 4917–4923.

[20]

Pan, W. C.; Yang, B.; Niu, G. D.; Xue, K. H.; Du, X. Y.; Yin, L. X.; Zhang, M. Y.; Wu, H. D.; Miao, X. S.; Tang, J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 2019, 31, 1904405.

[21]

Wang, X.; Shi, H. F.; Ma, H. L.; Ye, W. P.; Song, L. L.; Zan, J.; Yao, X. K.; Ou, X. Y.; Yang, G. H.; Zhao, Z. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 2021, 15, 187–192.

[22]

Shrestha, S.; Fischer, R.; Matt, G. J.; Feldner, P.; Michel, T.; Osvet, A.; Levchuk, I.; Merle, B.; Golkar, S.; Chen, H. W. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 2017, 11, 436–440.

[23]

Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

[24]

Daum, M.; Deumel, S.; Sytnyk, M.; Afify, H. A.; Hock, R.; Eigen, A.; Zhao, B. L.; Halik, M.; These, A.; Matt, G. J. et al. Self-healing Cs3Bi2Br3I6 perovskite wafers for X-ray detection. Adv. Funct. Mater. 2021, 31, 2102713.

[25]

López, C. A.; Abia, C.; Alvarez-Galván, M. C.; Hong, B. K.; Martínez-Huerta, M. V.; Serrano-Sánchez, F.; Carrascoso, F.; Castellanos-Gómez, A.; Fernández-Dı́az, M. T.; Alonso, J. A. Crystal structure features of CsPbBr3 perovskite prepared by mechanochemical synthesis. ACS Omega 2020, 5, 5931–5938.

[26]

Palazon, F.; El Ajjouri, Y.; Sebastia-Luna, P.; Lauciello, S.; Manna, L.; Bolink, H. J. Mechanochemical synthesis of inorganic halide perovskites: Evolution of phase-purity, morphology, and photoluminescence. J. Mater. Chem. C 2019, 7, 11406–11410.

[27]

Rakita, Y.; Kedem, N.; Gupta, S.; Sadhanala, A.; Kalchenko, V.; Böhm, M. L.; Kulbak, M.; Friend, R. H.; Cahen, D.; Hodes, G. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Cryst. Growth Des. 2016, 16, 5717–5725.

[28]

Liu, Y.; Zhu, X. F.; Li, M. R.; Liu, H. Y.; Cong, Y.; Yang. W. S. Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew. Chem., Int. Ed. 2013, 125, 3314–3318.

[29]

Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315–321.

[30]

Dong, S. H.; Hu, Z. Y.; Wei, P.; Han, J. R.; Wang, Z.; Liu, J.; Su, B. L.; Zhao, D. Y.; Liu, Y. All-inorganic perovskite single-crystal photoelectric anisotropy. Adv. Mater. 2022, 34, 2204342.

[31]

Zhang, C. X.; Chen, J. Y.; Wang, S.; Kong, L. M.; Lewis, S. W.; Yang, X. Y.; Rogach, A. L.; Jia, G. H. Metal halide perovskite nanorods: Shape matters. Adv. Mater. 2020, 32, 2002736.

[32]

Zhou, B.; Ding, D.; Wang, Y.; Fang, S. F.; Liu, Z. X.; Tang, J.; Li, H. N.; Zhong, H. Z.; Tian, B. B.; Shi, Y. M. A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides. Adv. Opt. Mater. 2021, 9, 2001435.

[33]

Lou, S. Q.; Xuan, T. T.; Liang, Q. Y.; Huang, J. J.; Cao, L. Y.; Yu, C. Y.; Cao, M. M.; Xia, C.; Wang, J.; Zhang, D. F. et al. Controllable and facile synthesis of CsPbBr3-Cs4PbBr6 perovskite composites in pure polar solvent. J. Colloid Interface Sci. 2019, 537, 384–388.

[34]

Qin, Z. J.; Dai, S. Y.; Hadjiev, V. G.; Wang, C.; Xie, L. X.; Ni, Y. Z.; Wu, C. Z.; Yang, G.; Chen, S.; Deng, L. Z. et al. Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite. Chem. Mater. 2019, 31, 9098–9104.

[35]

Nielsen, O. F.; Christensen, D. H.; Praestgaard, E. Interaction between dimethylsulfoxide and formamide in the liquid state. J. Chem. Phys. 1985, 82, 1183–1185.

[36]

Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

[37]

Gu, E. N.; Tang, X. F.; Langner, S.; Duchstein, P.; Zhao, Y. C.; Levchuk, I.; Kalancha, V.; Stubhan, T.; Hauch, J.; Egelhaaf, H. J. et al. Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule 2020, 4, 1806–1822.

[38]

Huang, W. X.; Manser, J. S.; Kamat, P. V.; Ptasinska, S. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem. Mater. 2016, 28, 303–311.

[39]

Chen, S. H.; Zhong, Q. X.; Liu, J.; Guan, W. H.; Li, P. L.; Mahmood, I.; Cao, M. H.; Zhang, Q. Improved photophysical properties and durability of CsPbBr3 NCs endowed by inorganic oxoacid and bromide ions. Nanoscale 2021, 13, 9634–9640.

[40]

Kim, B. W.; Heo, J. H.; Park, J. K.; Lee, D. S.; Park, H.; Kim, S. Y.; Kim, J. H.; Im, S. H. Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 2021, 97, 417–425.

[41]

Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

[42]

Batra, V.; Kotru, S.; Varagas, M.; Ramana, C. V. Optical constants and band gap determination of Pb0.95La0.05Zr0.54Ti0.46O3 thin films using spectroscopic ellipsometry and UV–visible spectroscopy. Opt. Mater. 2015, 49, 123–128.

[43]

Gao, Y. B.; Wu, Y. J.; Lu, H. B.; Chen, C.; Liu, Y.; Bai, X.; Yang, L. L.; Yu, W. W.; Dai, Q. L.; Zhang, Y. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 2019, 59, 517–526.

Nano Research
Pages 9983-9989
Cite this article:
Shi T, Liu W, Zhu J, et al. CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection. Nano Research, 2023, 16(7): 9983-9989. https://doi.org/10.1007/s12274-023-5487-3
Topics:

1869

Views

13

Crossref

11

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 30 October 2022
Revised: 19 December 2022
Accepted: 09 January 2023
Published: 20 February 2023
© Tsinghua University Press 2023
Return