Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Water/solid interfaces play crucial roles in a wide range of physicochemical and technological processes. However, our microscopic understanding of the interfacial water under ambient temperature is relatively primitive. Herein, we report the direct experimental construction of two-dimensional (2D) ice-like water layer on hydrophilic surface at room temperature by using environment-controlled atomic force microscopy. In contrast to the prevailing view that nanoscale confinement is needed for the formation of 2D ice-like water, we find that 2D ice-like water can form on mica surface at temperatures above the freezing point without confinement. The 2D ice-like water layer shows epitaxial relation with the underlying mica lattice and good thermostability. In addition, the growth of ice-like water layer can be well controlled by the mechanical force from the scanning tip. Furthermore, the friction properties of 2D ice-like water layer are also probed by friction force microscopy. It is found that the ice-like water layer can dramatically reduce the friction. These results provide deep understanding of 2D ice-like water formation on solid surfaces without nanoscale confinement and suggest means of growing 2D ices on surfaces at room temperature.
Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.
Ewing, G. E. Ambient thin film water on insulator surfaces. Chem. Rev. 2006, 106, 1511–1526.
Feibelman, P. J. The first wetting layer on a solid. Phys. Today 2010, 63, 34–39.
Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674.
Markovic, N. M. Interfacing electrochemistry. Nat. Mater. 2013, 12, 101–102.
Zilibotti, G.; Corni, S.; Righi, M. C. Load-induced confinement activates diamond lubrication by water. Phys. Rev. Lett. 2013, 111, 146101.
Martin-Jimenez, D.; Chacon, E.; Tarazona, P.; Garcia, R. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat. Commun. 2016, 7, 12164.
Umeda, K.; Zivanovic, L.; Kobayashi, K.; Ritala, J.; Kominami, H.; Spijker, P.; Foster, A. S.; Yamada, H. Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface. Nat. Commun. 2017, 8, 2111.
Li, Z. B.; Liu, Q.; Zhang, D. L.; Wang, Y.; Zhang, Y. G.; Li, Q.; Dong, M. D. Probing the hydration friction of ionic interfaces at the atomic scale. Nanoscale Horiz. 2022, 7, 368–375.
Li, Z. B.; Liu, Q.; Li, Q.; Dong, M. D. The role of hydrated anions in hydration lubrication. Nano Res. 2023, 16, 1096–1100.
Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.
Song, J.; Li, Q.; Wang, X. F.; Li, J. Y.; Zhang, S.; Kjems, J.; Besenbacher, F.; Dong, M. D. Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 2014, 5, 4837.
Zhao, W. H.; Wang, L.; Bai, J.; Yuan, L. F.; Yang, J. L.; Zeng, X. C. Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 2014, 47, 2505–2513.
Li, Q.; Song, J.; Besenbacher, F.; Dong, M. D. Two-dimensional material confined water. Acc. Chem. Res. 2015, 48, 119–127.
Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445.
Hong, Y.; Wang, S. M.; Li, Q.; Song, X.; Wang, Z. G.; Zhang, X.; Besenbacher, F.; Dong, M. D. Interfacial icelike water local doping of graphene. Nanoscale 2019, 11, 19334–19340.
Shen, Y. R.; Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 2006, 106, 1140–1154.
Björneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L. M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H. Z.; Tocci, G. et al. Water at interfaces. Chem. Rev. 2016, 116, 7698–7726.
Bian, K.; Gerber, C.; Heinrich, A. J.; Müller, D. J.; Scheuring, S.; Jiang, Y. Scanning probe microscopy. Nat. Rev. Methods Primers 2021, 1, 36.
Peng, J. B.; Guo, J.; Ma, R. Z.; Jiang, Y. Water–solid interfaces probed by high-resolution atomic force microscopy. Surf. Sci. Rep. 2022, 77, 100549.
Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 1995, 268, 267–269.
Cao, D. Y.; Song, Y. Z.; Peng, J. B.; Ma, R. Z.; Guo, J.; Chen, J.; Li, X. Z.; Jiang, Y.; Wang, E. G.; Xu, L. M. Advances in atomic force microscopy: Weakly perturbative imaging of the interfacial water. Front. Chem. 2019, 7, 626.
Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H. Atomic-scale distribution of water molecules at the mica–water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010, 104, 016101.
Fukuma, T.; Garcia, R. Atomic- and molecular-resolution mapping of solid–liquid interfaces by 3D atomic force microscopy. ACS Nano 2018, 12, 11785–11797.
Hong, Y.; Li, Q. Recent advances in probing two-dimensional materials confined water by scanning probe microscopy. Chin. Sci. Bull. 2021, 66, 1689–1702.
Maier, S.; Salmeron, M. How does water wet a surface? Acc. Chem. Res. 2015, 48, 2783–2790.
Ma, R. Z.; Cao, D. Y.; Zhu, C. Q.; Tian, Y.; Peng, J. B.; Guo, J.; Chen, J.; Li, X. Z.; Francisco, J. S.; Zeng, X. C. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577, 60–63.
Peng, J. B.; Cao, D. Y.; He, Z. L.; Guo, J.; Hapala, P.; Ma, R. Z.; Cheng, B. W.; Chen, J.; Xie, W. J.; Li, X. Z. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557, 701–705.
Guo, J.; Lü, J. T.; Feng, Y. X.; Chen, J.; Peng, J. B.; Lin, Z. R.; Meng, X. Z.; Wang, Z. C.; Li, X. Z.; Wang, E. G. et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 2016, 352, 321–325.
Yang, P.; Zhang, C.; Sun, W. Y.; Dong, J.; Cao, D. Y.; Guo, J.; Jiang, Y. Robustness of bilayer hexagonal ice against surface symmetry and corrugation. Phys. Rev. Lett. 2022, 129, 046001.
Piner, R. D.; Mirkin, C. A. Effect of water on lateral force microscopy in air. Langmuir 1997, 13, 6864–6868.
Zhu, C. Q.; Gao, Y. R.; Zhu, W. D.; Jiang, J.; Liu, J.; Wang, J. J.; Francisco, J. S.; Zeng, X. C. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proc. Natl. Acad. Sci. USA 2019, 116, 16723–16728.
Rosenberg, R. Why is ice slippery? Phys. Today 2005, 58, 50–54.
Wagner, K.; Cheng, P.; Vezenov, D. Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 2011, 27, 4635–4644.
Mullin, N.; Hobbs, J. K. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy. Rev. Sci. Instrum. 2014, 85, 113703.
Liu, J.; Zhu, C. Q.; Liu, K.; Jiang, Y. L.; Song, Y.; Francisco, J. S.; Zeng, X. C.; Wang, J. J. Distinct ice patterns on solid surfaces with various wettabilities. Proc. Natl. Acad. Sci. USA 2017, 114, 11285–11290.
Agarwal, G.; Sowards, L. A.; Naik, R. R.; Stone, M. O. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc. 2002, 125, 580–583.
Noy, A.; Sanders, C. H.; Vezenov, D. V.; Wong, S. S.; Lieber, C. M. Chemically-sensitive imaging in tapping mode by chemical force microscopy: Relationship between phase lag and adhesion. Langmuir 1998, 14, 1508–1511.
Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.
Bernal, J. D.; Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933, 1, 515–548.
Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858.
Miranda, P. B.; Xu, L.; Shen, Y. R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876–5879.
Canale, L.; Comtet, J.; Niguès, A.; Cohen, C.; Clanet, C.; Siria, A.; Bocquet, L. Nanorheology of interfacial water during ice gliding. Phys. Rev. X 2019, 9, 041025.
Bonn, D. The physics of ice skating. Nature 2020, 577, 173–174.
Sotthewes, K.; Bampoulis, P.; Zandvliet, H. J. W.; Lohse, D.; Poelsema, B. Pressure-induced melting of confined ice. ACS Nano 2017, 11, 12723–12731.