Journal Home > Volume 16 , Issue 7

Bimetallic alloys could form three typical structures including solid solution, heterostructure, and intermetallic compound, depending on the interactions between identical and different atoms. Although the trend can be predicted by the types of binary phase diagram, different synthetic protocols will trap the system in various kinetic intermediates among the three typical structures. Herein, we studied the phase evolution and elemental segregation in the alloy nanoparticles of immiscible Pd-Ru before and after thermal annealing. By developing an analysis method of local element segregation (LES) based on the energy dispersive spectroscopy (EDS) mapping signals, we were able to quantify the mixing of Pd and Ru atoms during the gradual phase transition from face-centered cubic (fcc) to hexagonal close packed (hcp). Density functional theory was also applied to calculate the energies of all possible PdRu4 structures (93 fcc models and 267 hcp models), which helps to rationalize the phase transition and element segregation. The annealing process also leads to the change of the electronic structure, which further influences the performance in the electrocatalytic hydrogen evolution reaction. The highest activity of PdRu4-400 was largely attributed to the proper interface between the Pd-rich fcc phase and Ru-rich hcp phase, as revolved by the above methods.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Temperature-driven phase transformation and element segregation in Pd-Ru immiscible alloy nanoparticles: Spatial resolving of elements and insights for electrocatalysis

Show Author's information Hui Li1,2,§Zheng Hu1,§Yu Zhang1,2Wenbo Zhao1Yuyao Zeng3Wei Zhou4Shi Hu1,2( )
Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
Department of Physics, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China

§ Hui Li and Zheng Hu contributed equally to this work.

Abstract

Bimetallic alloys could form three typical structures including solid solution, heterostructure, and intermetallic compound, depending on the interactions between identical and different atoms. Although the trend can be predicted by the types of binary phase diagram, different synthetic protocols will trap the system in various kinetic intermediates among the three typical structures. Herein, we studied the phase evolution and elemental segregation in the alloy nanoparticles of immiscible Pd-Ru before and after thermal annealing. By developing an analysis method of local element segregation (LES) based on the energy dispersive spectroscopy (EDS) mapping signals, we were able to quantify the mixing of Pd and Ru atoms during the gradual phase transition from face-centered cubic (fcc) to hexagonal close packed (hcp). Density functional theory was also applied to calculate the energies of all possible PdRu4 structures (93 fcc models and 267 hcp models), which helps to rationalize the phase transition and element segregation. The annealing process also leads to the change of the electronic structure, which further influences the performance in the electrocatalytic hydrogen evolution reaction. The highest activity of PdRu4-400 was largely attributed to the proper interface between the Pd-rich fcc phase and Ru-rich hcp phase, as revolved by the above methods.

Keywords: hydrogen evolution reaction, Pd-Ru alloy, short-range order, local element segregation

References(50)

[1]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[2]

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

[3]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

[4]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

[7]

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

[8]

Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

[9]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[10]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[11]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[12]

Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.

[13]

Huang, J.; Peng, B. S.; Stracensky, T.; Liu, Z. Y.; Zhang, A.; Xu, M. J.; Liu, Y.; Zhao, Z. P.; Duan, X. F.; Jia, Q. Y. et al. 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading. Sci. China Mater. 2022, 65, 704–711.

[14]

Baskaran, S.; Xu, C. Q.; Wang, Y. G.; Garzón, I. L.; Li, J. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction. Sci. China Mater. 2020, 63, 993–1002.

[15]

Kobayashi, H.; Kusada, K.; Kitagawa, H. Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc. Chem. Res. 2015, 48, 1551–1559.

[16]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[17]

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

[18]
Baker, H. ASM Handbook. Volume 3. Alloy Phase Diagrams; 10th ed. ASM International: Materials Park, Ohio, 1992.
[19]

Zugic, B.; Wang, L. C.; Heine, C.; Zakharov, D. N.; Lechner, B. A. J.; Stach, E. A.; Biener, J.; Salmeron, M.; Madix, R. J.; Friend, C. M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558–564.

[20]

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

[21]

Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

[22]

Yang, C. P.; Ko, B. H.; Hwang, S.; Liu, Z. Y.; Yao, Y. G.; Luc, W.; Cui, M. J.; Malkani, A. S.; Li, T. Y.; Wang, X. Z. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 2020, 6, eaaz6844.

[23]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[24]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[25]

Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564.

[26]

Guo, H. Y.; Li, H.; Jarvis, K.; Wan, H. Q.; Kunal, P.; Dunning, S. G.; Liu, Y. L.; Henkelman, G.; Humphrey, S. M. Microwave-assisted synthesis of classically immiscible Ag-Ir alloy nanoparticle catalysts. ACS Catal. 2018, 8, 11386–11397.

[27]

Kim, D.; Nam, H.; Cho, Y. H.; Yeo, B. C.; Cho, S. H.; Ahn, J. P.; Lee, K. Y.; Lee, S. Y.; Han, S. S. Unlocking the potential of nanoparticles composed of immiscible elements for direct H2O2 synthesis. ACS Catal. 2019, 9, 8702–8711.

[28]

Yang, X. C.; Li, Z. P.; Kitta, M.; Tsumori, N.; Guo, W. H.; Zhang, Z. T.; Zhang, J. B.; Zou, R. Q.; Xu, Q. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. Nano Res. 2020, 13, 105–111.

[29]

Fan, J. C.; Wu, J. D.; Cui, X. Q.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Lei, B. H.; Singh, D. J.; Zheng, W. T. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645–3651.

[30]

Wu, D. S.; Zheng, Z. L.; Gao, S. Y.; Cao, M. N.; Cao, R. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation. Phys. Chem. Chem. Phys. 2012, 14, 8051–8057.

[31]

Wang, F. L.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Nanba, Y.; Koyama, M.; Kitagawa, H. Solid-solution alloy nanoparticles of the immiscible iridium-copper system with a wide composition range for enhanced electrocatalytic applications. Angew. Chem., Int. Ed. 2018, 57, 4505–4509.

[32]

Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.

[33]

Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Xie, W.; Koyama, M.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Emergence of high ORR activity through controlling local density-of-states by alloying immiscible Au and Ir. Chem. Sci. 2019, 10, 652–656.

[34]

Qin, X. P.; Zhang, L. L.; Xu, G. L.; Zhu, S. Q.; Wang, Q.; Gu, M.; Zhang, X. Y.; Sun, C. J.; Balbuena, P. B.; Amine, K. et al. The role of Ru in improving the activity of Pd toward hydrogen evolution and oxidation reactions in alkaline solutions. ACS Catal. 2019, 9, 9614–9621.

[35]

Huang, B.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Coreduction methodology for immiscible alloys of CuRu solid-solution nanoparticles with high thermal stability and versatile exhaust purification ability. Chem. Sci. 2020, 11, 11413–11418.

[36]

Huang, B.; Kobayashi, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Haneda, M.; Xie, W. et al. A CO adsorption site change induced by copper substitution in a ruthenium catalyst for enhanced CO oxidation activity. Angew. Chem., Int. Ed. 2019, 58, 2230–2235.

[37]

Huang, B.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Solid-solution alloying of immiscible Ru and Cu with enhanced CO oxidation activity. J. Am. Chem. Soc. 2017, 139, 4643–4646.

[38]

Komatsu, T.; Kobayashi, H.; Kusada, K.; Kubota, Y.; Takata, M.; Yamamoto, T.; Matsumura, S.; Sato, K.; Nagaoka, K.; Kitagawa, H. First-principles calculation, synthesis, and catalytic properties of Rh-Cu alloy nanoparticles. Chem.—Eur. J. 2017, 23, 57–60.

[39]

Wu, D. S.; Kusada, K.; Kitagawa, H. Recent progress in the structure control of Pd-Ru bimetallic nanomaterials. Sci. Technol. Adv. Mater. 2016, 17, 583–596.

[40]

Kusada, K.; Kobayashi, H.; Ikeda, R.; Kubota, Y.; Takata, M.; Toh, S.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K. et al. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: Changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. J. Am. Chem. Soc. 2014, 136, 1864–1871.

[41]

Antillon, E.; Woodward, C.; Rao, S. I.; Akdim, B.; Parthasarathy, T. A. Chemical short range order strengthening in a model fcc high entropy alloy. Acta Mater. 2020, 190, 29–42.

[42]

Antillon, E.; Woodward, C.; Rao, S. I.; Akdim, B. Chemical short range order strengthening in bcc complex concentrated alloys. Acta Mater. 2021, 215, 117012.

[43]

Zhang, R. P.; Zhao, S. T.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Asta, M.; Ritchie, R. O.; Minor, A. M. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 2020, 581, 283–287.

[44]

Zhang, F. X.; Zhao, S. J.; Jin, K.; Xue, H.; Velisa, G.; Bei, H.; Huang, R.; Ko, J. Y. P.; Pagan, D. C.; Neuefeind, J. C. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 2017, 118, 205501.

[45]

Yuan, Y. K.; Kim, D. S.; Zhou, J. H.; Chang, D. J.; Zhu, F.; Nagaoka, Y.; Yang, Y.; Pham, M.; Osher, S. J.; Chen, O. et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 2022, 21, 95–102.

[46]

Chen, P. C.; Gao, M. Y.; Yu, S.; Jin, J. B.; Song, C. Y.; Salmeron, M.; Scott, M. C.; Yang, P. D. Revealing the phase separation behavior of thermodynamically immiscible elements in a nanoparticle. Nano Lett. 2021, 21, 6684–6689.

[47]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[48]

Wu, D. S.; Kusada, K.; Aspera, S. M.; Nakanishi, H.; Chen, Y. N.; Seo, O.; Song. C.; Kim, J.; Hiroi, S. et al. Phase control of solid-solution nanoparticles beyond the phase diagram for enhanced catalytic properties. ACS Mater. Au. 2022, 2, 110–116.

[49]

Lee, K. S.; Jeon, T. Y.; Yoo, S. J.; Park, I. S.; Cho, Y. H.; Kang, S. H.; Choi, K. H.; Sung, Y. E. Effect of PtRu alloying degree on electrocatalytic activities and stabilities. Appl. Catal. B: Environ. 2011, 102, 334–342.

[50]

Li, Y. T.; Zhang, L. A.; Qin, Y.; Chu, F. Q.; Kong, Y.; Tao, Y. X.; Li, Y. X.; Bu, Y. F.; Ding, D.; Liu, M. L. Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 2018, 8, 5714–5720.

File
12274_2023_5484_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2022
Revised: 07 January 2023
Accepted: 10 January 2023
Published: 02 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of Tianjin, China (No. 22175127) and Institute of Energy, Hefei Comprehensive National Science Center (No. 19KZS207).

Return