Journal Home > Volume 16 , Issue 7

Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions (HER/OER), but such task is still challenging. Herein, we proposed a protocol of heterojunction interface editing (HIE) strategy by oxygen atoms decoration for synergistic boosting electrocatalytic HER and OER performances. A novel Co/NiCoP nanospheres (NSs) heterojunction was synthesized by crystal seed template transformation method with Ni5P4 microspheres as seeds. The effective oxygen atoms interface editing increased the oxidation state of Co atoms and prolonged the Co–P bond length of Co/NiCoP NSs heterojunction, thus the electron localization on P sites was enhanced, leading to the dramatically elevated HER and OER performances simultaneously. The as-constructed O-Co/NiCoP NSs show excellent electrocatalytic activity with 361 and 430 mV vs. reversible hydrogen electrode (RHE) to arrive high current density of 300 mA·cm−2 for HER and OER in 1 M KOH as well as good stability. The proposed HIE concept could provide a new perspective on the catalyst design for energy conversion systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis

Show Author's information Yan Lin1Xiaojiao Cui1Yilin Zhao2Zhicheng Liu1Guoxin Zhang1Yuan Pan2( )
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions (HER/OER), but such task is still challenging. Herein, we proposed a protocol of heterojunction interface editing (HIE) strategy by oxygen atoms decoration for synergistic boosting electrocatalytic HER and OER performances. A novel Co/NiCoP nanospheres (NSs) heterojunction was synthesized by crystal seed template transformation method with Ni5P4 microspheres as seeds. The effective oxygen atoms interface editing increased the oxidation state of Co atoms and prolonged the Co–P bond length of Co/NiCoP NSs heterojunction, thus the electron localization on P sites was enhanced, leading to the dramatically elevated HER and OER performances simultaneously. The as-constructed O-Co/NiCoP NSs show excellent electrocatalytic activity with 361 and 430 mV vs. reversible hydrogen electrode (RHE) to arrive high current density of 300 mA·cm−2 for HER and OER in 1 M KOH as well as good stability. The proposed HIE concept could provide a new perspective on the catalyst design for energy conversion systems.

Keywords: electrocatalysis, heterojunction, bifunctional catalyst, transition metal phosphides, nanocrystals synthesis

References(36)

[1]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[2]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[3]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[4]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[5]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[6]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[7]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[8]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[9]

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

[10]

Xu, J. Y.; Liu, Y. F.; Li, J. J.; Amorim, I.; Zhang, B. S.; Xiong, D. H.; Zhang, N.; Thalluri, S. M.; Sousa, J. P. S.; Liu, L. F. Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. J. Mater. Chem. A 2018, 6, 20646–20652.

[11]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

[12]

Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

[13]

Zhang, X.; Liang, Y. Y. Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 2018, 5, 1700644.

[14]

Liu, S. Q.; Wen, H. R.; Guo Y.; Zhu, Y. W.; Fu, X. Z.; Sun, R.; Wong, C. P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy 2018, 44, 7–14.

[15]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[16]

Zhang, X. P.; Zhu, S. Y.; Xia, L.; Si, C. D.; Qu, F.; Qu, F. L. Ni(OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem. Commun. 2018, 54, 1201–1204.

[17]

Gao, M.; Chen, L. L.; Zhang, Z. H.; Sun, X. P.; Zhang, S. S. Interface engineering of the Ni(OH)2-Ni3N nanoarray heterostructure for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 833–836.

[18]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[19]

Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.

[20]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[21]

Lin, Y.; Pan, Y.; Liu, S. J.; Sun, K. A.; Cheng, Y. S.; Liu, M.; Wang, Z. J.; Li, X. Y.; Zhang, J. Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl. Catal. B: Environ. 2019, 259, 118039.

[22]

Lin, Y.; Sun, K. A.; Liu, S. J.; Chen, X. M.; Cheng, Y. S.; Cheong, W. C.; Chen, Z.; Zheng, L. R.; Zhang, J.; Li, X. Y. et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 2019, 9, 1901213.

[23]

Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.

[24]

Dasireddy, V. D.; Logar, N. Z.; Kovač, J.; Likozar, B. Production of butadiene by oxidative butane dehydrogenation with NO: Effect of the oxidant species and lattice oxygen mobility in V2O5–WO3/TiO2 catalyst. Catal. Sci. Technol. 2022, 12, 2990–3003.

[25]

Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

[26]

Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

[27]

Cheng, J. Q.; Liu, P.; Peng, T.; Liu, Q. L.; Chen, W. S.; Liu, B. W.; Yuan, Y.; Zhang, W.; Song, F.; Gu, J. J. et al. Mechanically alloyed NiTiO3/transition metal heterostructures: Introducing oxygen vacancies for exceptionally enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2020, 8, 14908–14914.

[28]

Enkhtuvshin, E.; Kim, K. M.; Kim, Y. K.; Mihn, S.; Kim, S. J.; Jung, S. Y.; Thao, N. T. T.; Ali, G.; Akbar, M.; Chung, K. Y. et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J. Mater. Chem. A 2021, 9, 27332–27346.

[29]

Lin, Y.; Pan, Y.; Zhang, J. CoP nanorods decorated biomass derived N,P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochim. Acta 2017, 232, 561–569.

[30]

Zhao, G. Q.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale 2018, 10, 19074–19081.

[31]

Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato, M.; Del Rio Castillo, A. E.; Bonaccorso, F. Doped-MoSe2 nanoflakes/3D metal oxide-hydr(oxy)oxides hybrid catalysts for pH-universal electrochemical hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801764.

[32]

Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

[33]

Huang, Y. P.; Lai, F. L.; Zhang, L. S.; Lu, H. Y.; Miao, Y. E.; Liu, T. X. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion. Sci. Rep. 2016, 6, 31541.

[34]

Huang, Y. P.; Zhang, L. S.; Lu, H. Y.; Lai, F. L.; Miao, Y. E.; Liu, T. X. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications. Inorg. Chem. Front. 2016, 3, 969–976.

[35]

Geng, X. M.; Wu, W.; Li, N.; Sun, W. W.; Armstrong, J.; Al-hilo, A.; Brozak, M.; Cui, J. B.; Chen, T. P. Three-dimensional structures of MoS2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv. Funct. Mater. 2014, 24, 6123–6129.

[36]

Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478–483.

File
12274_2023_5482_MOESM1_ESM.pdf (716.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2022
Revised: 06 January 2023
Accepted: 07 January 2023
Published: 28 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22109090 and 22108306), the Taishan Scholars Program of Shandong Province (No. tsqn201909065), Shandong Provincial Natural Science Foundation (Nos. ZR2021YQ15 and ZR2020QB174), Hefei National Research Center for Physical Sciences at the Microscale (No. KF2021107), and the Fundamental Research Funds for the Central Universities (No. 22CX07009A).

Return