Journal Home > Volume 16 , Issue 7

Currently, single-atom combo catalysts (SACCs) for carbon dioxide reduction reaction (CO2RR) to the formation of HCOOH are still very limited, especially the lanthanide-based SACCs. In this work, the novel SACCs with atomically dispersed In and Ce active sites were successfully prepared on the nitrogen-doped carbon matrix (InCe/CN). Both aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) images and the extended X-ray absorption fine structure (EXAFS) spectra proved the well-isolated In and Ce atoms. The as-prepared InCe/CN shows a high Faradaic efficiency (FE) (77%) and current density of HCOOH formation (jHCOOH) at −1.35 V vs. reversible hydrogen electrode (RHE), much higher than the single atom catalysts. Theoretical calculations have indicated that the introduced Ce single atom sites not only significantly promote electron transfer but also optimize the In-5p orbitals towards higher selectivity towards the HCOOH formation. This work innovatively extends the design of SACCs towards the main group and Ln metals for more applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically dispersed indium and cerium sites for selectively electroreduction of CO2 to formate

Show Author's information Zhong Liang1Lianpeng Song1Mingzi Sun2Bolong Huang2( )Yaping Du1( )
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China

Abstract

Currently, single-atom combo catalysts (SACCs) for carbon dioxide reduction reaction (CO2RR) to the formation of HCOOH are still very limited, especially the lanthanide-based SACCs. In this work, the novel SACCs with atomically dispersed In and Ce active sites were successfully prepared on the nitrogen-doped carbon matrix (InCe/CN). Both aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) images and the extended X-ray absorption fine structure (EXAFS) spectra proved the well-isolated In and Ce atoms. The as-prepared InCe/CN shows a high Faradaic efficiency (FE) (77%) and current density of HCOOH formation (jHCOOH) at −1.35 V vs. reversible hydrogen electrode (RHE), much higher than the single atom catalysts. Theoretical calculations have indicated that the introduced Ce single atom sites not only significantly promote electron transfer but also optimize the In-5p orbitals towards higher selectivity towards the HCOOH formation. This work innovatively extends the design of SACCs towards the main group and Ln metals for more applications.

Keywords: carbon dioxide reduction, rare earth, single-atom combo catalysts, formate generation, multi-active sites

References(53)

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[3]

Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123–4129.

[4]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[5]

Shi, X. M.; Zeng, Z. C.; Sun, M. Z.; Huang, B. L.; Zhang, H. T.; Luo, W.; Huang, Y. H.; Du, Y. P.; Yan, C. H. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery. Nano Lett. 2021, 21, 9325–9331.

[6]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[7]

Kibria, G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[8]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[9]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[10]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

[11]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[12]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[13]

Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. N.; Yang, Y. L.; Liu, X. Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification. Proc. Natl. Acad. Sci. USA 2021, 118, e2105628118.

[14]

Li, N.; Song, X. Z.; Wang, L.; Geng, X. L.; Wang, H.; Tang, H. Y.; Bian, Z. Y. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl. Mater. Interfaces 2020, 12, 24019–24029.

[15]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[16]
Li, L.; Zhang, N. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-5335-x.
[17]

Guo, W. W.; Tan, X. X.; Bi, J. H.; Xu, L.; Yang, D. X.; Chen, C. J.; Zhu, Q. G.; Ma, J.; Tayal, A.; Ma, J. Y. et al. Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J. Am. Chem. Soc. 2021, 143, 6877–6885.

[18]

Lu, P. L.; Tan, X.; Zhao, H. T.; Xiang, Q.; Liu, K. L.; Zhao, X. X.; Yin, X. M.; Li, X. Z.; Hai, X.; Xi, S. B. et al. Atomically dispersed indium sites for selective CO2 electroreduction to formic acid. ACS Nano 2021, 15, 5671–5678.

[19]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[20]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

[21]

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

[22]

Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

[23]

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

[24]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, Y. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[25]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[26]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[27]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2022, 62, e202215136.

[28]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[29]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[30]

Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. “More is different:” Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.

[31]

Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7382–7388.

[32]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[33]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[34]

Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

[35]

Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

[36]

He, T. W.; Santiago, A. R. P.; Kong, Y. C.; Ahsan, A.; Luque, R.; Du, A. J.; Pan, H. Atomically dispersed heteronuclear dual-atom catalysts: A new rising star in atomic catalysis. Small 2022, 18, 2106091.

[37]

Liang, Z.; Song, L. P.; Sun, M. Z.; Huang, B. L.; Du, Y. P. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 2021, 7, eabl4915.

[38]

Zhang, Z. R.; Ahmad, F.; Zhao, W. H.; Yan, W. S.; Zhang, W. H.; Huang, H. W.; Ma, C.; Zeng, J. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 2019, 19, 4029–4034.

[39]

Ding, C. M.; Li, A. L.; Lu, S. M.; Zhang, H. F.; Li, C. In situ electrodeposited indium nanocrystals for efficient CO2 reduction to CO with low overpotential. ACS Catal. 2016, 6, 6438–6443.

[40]

Li, J. Y.; Zhu, M. H.; Han, Y. F. Recent advances in electrochemical CO2 reduction on indium-based catalysts. ChemCatChem 2021, 13, 514–531.

[41]

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

[42]

Chen, P.; Lei, B.; Dong, X. A.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La-N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

[43]

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

[44]

Li, J. C.; Qin, X. P.; Xiao, F.; Liang, C. H.; Xu, M. J.; Meng, Y.; Sarnello, E.; Fang, L. Z.; Li, T.; Ding, S. C. et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett. 2021, 21, 4508–4515.

[45]

Yao, D. Z.; Tang, C.; Zhi, X.; Johannessen, B.; Slattery, A.; Chern, S.; Qiao, S. Z. Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater., 2022, 2209386.

[46]

Shi, H. N.; Wang, H. Z.; Zhou, Y. C.; Li, J. H.; Zhai, P. L.; Li, X. Y.; Gurzadyan, G. G.; Hou, J. G.; Yang, H.; Guo, X. W. Atomically dispersed indium-copper dual-metal active sites promoting C−C coupling for CO2 photoreduction to ethanol. Angew. Chem., Int. Ed. 2022, 61, e202208904.

[47]

Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed. 2022, 61, e202206579.

[48]

Zhang, N. Q.; Yan, H.; Li, L. C.; Wu, R.; Song, L. Y.; Zhang, G. Z.; Liang, W. J.; He, H. Use of rare earth elements in single-atom site catalysis: A critical review—Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare Earth 2021, 39, 233–242.

[49]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

[50]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[51]

Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

[52]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[53]

Head, J. D.; Zerner, M. C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

File
12274_2023_5481_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2022
Revised: 06 January 2023
Accepted: 07 January 2023
Published: 22 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. 21971117), the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (No. N_PolyU502/21), Functional Research Funds for the Central Universities, Nankai University (No. 63186005), Tianjin Key Lab for Rare Earth Materials and Applications (No. ZB19500202), 111 Project (No. B18030) from China, the Outstanding Youth Project of Tianjin Natural Science Foundation (No. 20JCJQJC00130), the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V), Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), the Key Project of Tianjin Natural Science Foundation (No. 20JCZDJC00650), the National Postdoctoral Program for Innovative Talents (No. BX20220157), Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures (No. 2022GXYSOF07), Departmental General Research Fund (Project Code: ZVUL) from Department of Applied Biology and Chemical Technology of Hong Kong Polytechnic University, and Haihe Laboratory of Sustainable Chemical Transformations. B.H. also thank the support from Research Centre for Carbon-Strategic Catalysis (RC-CSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University..

Return