AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries

Yifan Xu1,2,3Ruo Zhao1,3( )Lei Gao3,4Tingsong Gao3Wenjuan Wang2Juncao Bian3Songbai Han3Jinlong Zhu3Qiang Xu2Yusheng Zhao3
Institute for Advanced Study, Shenzhen University, Shenzhen 518055, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

A three-dimensional fibrous membrane with ion selectivity was prepared and utilized as a solid filler to produce the fiber-reinforced solid polymer electrolyte by in situ polymerization. The electrolyte had a high polymerization degree, good ionic conductivity, and excellent interfacial compatibility with electrodes, enabling a uniform Li deposition and long-term cycling performance in solid batteries.

Abstract

Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li+ migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.

Electronic Supplementary Material

Download File(s)
12274_2023_5480_MOESM1_ESM.pdf (2 MB)
12274_2023_5480_MOESM2_ESM.pdf (563.1 KB)

References

[1]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[2]

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2019, 5, 105–126.

[3]

Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270.

[4]

Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

[5]

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

[6]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[7]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[8]

Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.

[9]

Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

[10]

Zhu, L.; Wang, Y. W.; Wu, Y. M.; Feng, W. L.; Liu, Z. L.; Tang, W. P.; Wang, X. W.; Xia, Y. Y. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability. Adv. Funct. Mater. 2022, 32, 2201136.

[11]

Ding, P. P.; Lin, Z. Y.; Guo, X. W.; Wu, L. Q.; Wang, Y. T.; Guo, H. X.; Li, L. L.; Yu, H. J. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474.

[12]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

[13]

Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches, and applications. Ionics 2016, 22, 1259–1279.

[14]

Zhu, M.; Li, L. L.; Zhang, Y. J.; Wu, K.; Yu, F. F.; Huang, Z. Y.; Wang, G. Y.; Li, J. Y.; Wen, L. Y.; Liu, H. K. et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153.

[15]

Li, Z.; Zhou, X. Y.; Guo, X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Mater. 2020, 29, 149–155.

[16]

Jin, Y. M.; Zong, X.; Zhang, X. B.; Jia, Z. G.; Xie, H. J.; Xiong, Y. P. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 2022, 49, 433–444.

[17]

Wen, S. J.; Luo, C.; Wang, Q. R.; Wei, Z. Y.; Zeng, Y. X.; Jiang, Y. D.; Zhang, G. Z.; Xu, H. L.; Wang, J.; Wang, C. Y. et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 2022, 47, 453–461.

[18]

Zhao, Y. B.; Bai, Y.; Li, W. D.; Liu, A. M.; An, M. Z.; Bai, Y. P.; Chen, G. R. Semi closed coordination structure polymer electrolyte combined in situ interface engineering for lithium batteries. Chem. Eng. J. 2020, 394, 124847.

[19]

Morioka, T.; Ota, K.; Tominaga, Y. Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer 2016, 84, 21–26.

[20]

Mackanic, D. G.; Michaels, W.; Lee, M.; Feng, D. W.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 2018, 8, 1800703.

[21]

Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C. M.; O’Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 2018, 264, 367–375.

[22]

Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

[23]

Wen, K. H.; Xin, C. Z.; Guan, S. D.; Wu, X. B.; He, S.; Xue, C. J.; Liu, S. J.; Shen, Y.; Li, L. L.; Nan, C. W. Ion-dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv. Mater. 2022, 34, 2202143.

[24]

Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

[25]

Shen, L.; Wu, H. B.; Liu, F.; Brosmer, J. L.; Shen, G. R.; Wang, X. F.; Zink, J. I.; Xiao, Q. F.; Cai, M.; Wang, G. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 2018, 30, 1707476.

[26]

Du, L. L.; Zhang, B.; Deng, W.; Cheng, Y.; Xu, L.; Mai, L. Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 2022, 12, 2200501.

[27]

Cabañero Martínez, M. A.; Boaretto, N.; Naylor, A. J.; Alcaide, F.; Salian, G. D.; Palombarini, F.; Ayerbe, E.; Borras, M.; Casas-Cabanas, M. Are polymer-based electrolytes ready for high-voltage lithium battery applications. An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 2022, 12, 2201264.

[28]

Wang, Z. X.; Huang, B. Y.; Xue, R. J.; Huang, X. J.; Chen, L. Q. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ion. 1999, 121, 141–156.

[29]

Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

[30]

Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

[31]

Zhong, R. Q.; Wu, Y. X.; Liang, Z. B.; Guo, W. H.; Zhi, C. X.; Qu, C.; Gao, S.; Zhu, B. J.; Zhang, H.; Zou, R. Q. Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon 2019, 142, 115–122.

[32]

Serre, C.; Mellot-Draznieks, C., Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2017, 315, 1828–1831.

[33]

Ma, M. Y.; Bétard, A.; Weber, I.; Al-Hokbany, N. S.; Fischer, R. A.; Metzler-Nolte, N. Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice “breathing”. Cryst. Growth Des. 2013, 13, 2286–2291.

[34]

Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

[35]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

[36]
Tanthana, J.; Chuang, S. S. C. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 2010, 3, 957–964.
[37]

Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

[38]

Zhu, F. L.; Bao, H. F.; Wu, X. S.; Tao, Y. L.; Qin, C.; Su, Z. M.; Kang, Z. H. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 43206–43213.

[39]

Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919–2926.

[40]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[41]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

[42]

Park, K.; Goodenough, J. B. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 2017, 7, 1700732.

[43]

Xu, H. H.; Li, Y. T.; Zhou, A. J.; Wu, N.; Xin, S.; Li, Z. Y.; Goodenough, J. B. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40°C. Nano Lett. 2018, 18, 7414–7418.

[44]

Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Stabilizing polymer-lithium interface in a rechargeable solid battery. Adv. Funct. Mater. 2020, 30, 1908047.

[45]

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

[46]

Li, X.; Liu, J. D.; He, J.; Wang, H. P.; Qi, S. H.; Wu, D. X.; Huang, J. D.; Li, F.; Hu, W.; Ma, J. M. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li. | NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 2021, 31, 2104395.

[47]

Wang, Y.; Liu, J. H.; Chen, T. W.; Lin, W. C.; Zheng, J. X. Factors that affect volume change during electrochemical cycling in cathode materials for lithium ion batteries. Phys. Chem. Chem. Phys. 2022, 24, 2167–2175.

[48]

Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

Nano Research
Pages 9259-9266
Cite this article:
Xu Y, Zhao R, Gao L, et al. A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries. Nano Research, 2023, 16(7): 9259-9266. https://doi.org/10.1007/s12274-023-5480-x
Topics:

2107

Views

10

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 27 October 2022
Revised: 25 December 2022
Accepted: 06 January 2023
Published: 01 June 2023
© Tsinghua University Press 2023
Return