Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Affected by cobalt (Co) supply bottlenecks and high costs, Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries (LIBs). Low-cost LiNixAl1−xO2 (x ≥ 0.9) cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life. Herein, we employ a strategy of Mg/W Li/Ni dual-site co-doping LiNi0.9Al0.1O2 (named as LNA90) cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure. The Mg/W co-doped LiNi0.9Al0.1O2 cathode (named as LNAMW) exhibits high capacity retention of 94.9% at 1 C and 3.0–4.5 V after 100 cycles with 22.0% increase over the pristine cathode LNA90 and maintains the intact particle morphology. Meanwhile, the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes (Ni mol% > 80%). Our work offers a straightforward, efficient, and scalable strategy for the future design of Co-free Ni-rich cathodes to facilitate the development of economical lithium-ion batteries.
Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.
Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, K.; Cheng, F. Y.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 2021, 43, 132–165.
Ryu, H. H.; Sun, H. H.; Myung, S. T.; Yoon, C. S.; Sun, Y. K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ. Sci. 2021, 14, 844–852.
Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.
Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.
Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Yin, L.; Li, T. Y.; Xu, W. Q.; Jia, H.; Li, Q. Y. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 2022, 610, 67–73.
Li, W. D.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.
Lee, S.; Li, W. D.; Dolocan, A.; Celio, H.; Park, H.; Warner, J. H.; Manthiram, A. In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2100858.
Liu, H.; Wolfman, M.; Karki, K.; Yu, Y. S.; Stach, E. A.; Cabana, J.; Chapman, K. W.; Chupas, P. J. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2017, 17, 3452–3457.
Liu, L. H.; Li, M. C.; Chu, L. H.; Jiang, B.; Lin, R. X.; Zhu, X. P.; Cao, G. Z. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci. 2020, 111, 100655.
Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328.
Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.
Maiti, S.; Konar, R.; Sclar, H.; Grinblat, J.; Talianker, M.; Tkachev, M.; Wu, X. H.; Kondrakov, A.; Nessim, G. D.; Aurbach, D. Stabilizing high-voltage lithium-ion battery cathodes using functional coatings of 2D tungsten diselenide. ACS Energy Lett. 2022, 7, 1383–1391.
Liu, L.; Zhang, Y. J.; Zhao, Y.; Jiang, G. H.; Gong, R.; Li, Y.; Meng, Q.; Dong, P. Surface growth and intergranular separation of polycrystalline particles for regeneration of stable single-crystal cathode materials. ACS Appl. Mater. Interfaces 2022, 14, 29886–29895.
Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803963.
Park, N. Y.; Ryu, H. H.; Park, G. T.; Noh, T. C.; Sun, Y. K. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv. Energy Mater. 2021, 11, 2003767.
Kaneda, H.; Furuichi, Y.; Ikezawa, A.; Arai, H. Effects of aluminum substitution in nickel-rich layered LiNixAl1−xO2 (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance. J. Mater. Chem. A 2021, 9, 21981–21994.
Kim, M. G.; Sung, N. E.; Shin, H. J.; Shin, N. S.; Ryu, K. S.; Yo, C. H. Ni and oxygen K-edge XAS investigation into the chemical bonding for lithiation of LiyNi1−xAlxO2 cathode material. Electrochim. Acta 2004, 50, 501–504.
Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.
Wei, H. X.; Tang, L. B.; Huang, Y. D.; Wang, Z. Y.; Luo, Y. H.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater. Today 2021, 51, 365–392.
Yin, S. Y.; Deng, W. T.; Chen, J.; Gao, X.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021, 83, 105854.
Kim, U. H.; Park, G. T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y. S.; Shapiro, D. A.; Maglia, F.; Kim, S. J.; Lamp, P. et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ. Sci. 2021, 14, 1573–1583.
Tang, L. B.; Liu, Y.; Wei, H. X.; Yan, C.; He, Z. J.; Li, Y. J.; Zheng, J. C. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J. Energy Chem. 2021, 55, 114–123.
Bi, Y. J.; Liu, M.; Xiao, B. W.; Jiang, Y.; Lin, H.; Zhang, Z. G.; Chen, G. X.; Sun, Q.; He, H. Y.; Huang, F. et al. Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Mater. 2020, 24, 291–296.
Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.
Cui, Z. H.; Xie, Q.; Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15324–15332.
Shen, Y. B.; Yao, X. J.; Zhang, J. H.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Zhang, Y. H.; Hu, J. H.; Cheng, Y. et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900.
Min, K.; Seo, S. W.; Song, Y. Y.; Lee, H. S.; Cho, E. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys. Chem. Chem. Phys. 2017, 19, 1762–1769.
Jung, C. H.; Kim, D. H.; Eum, D.; Kim, K. H.; Choi, J.; Lee, J.; Kim, H. H.; Kang, K.; Hong, S. H. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2010095.
Xin, F. X.; Zhou, H.; Zong, Y. X.; Zuba, M.; Chen, Y.; Chernova, N. A.; Bai, J. M.; Pei, B.; Goel, A.; Rana, J. et al. What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 1377–1382.
Sun, H. H.; Kim, U. H.; Park, J. H.; Park, S. W.; Seo, D. H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y. K. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 2021, 12, 6552.
Park, N. Y.; Ryu, H. H.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles. ACS Energy Lett. 2021, 6, 4195–4202.
Kim, U. H.; Park, N. Y.; Park, G. T.; Kim, H.; Yoon, C. S.; Sun, Y. K. High-energy W-doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 2020, 33, 399–407.
Geng, C. X.; Rathore, D.; Heino, D.; Zhang, N.; Hamam, I.; Zaker, N.; Botton, G. A.; Omessi, R.; Phattharasupakun, N.; Bond, T. et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv. Energy Mater. 2022, 12, 2103067.
Meng, J. X.; Xu, L. S.; Ma, Q. X.; Yang, M. Q.; Fang, Y. Z.; Wan, G. Y.; Li, R. H.; Yuan, J. J.; Zhang, X. K.; Yu, H. J. et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.
Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.
Wang, L. Z.; Qin, J.; Bai, Z. M.; Qian, H. M.; Cao, Y. Y.; Sari, H. M. K.; Xi, Y. K.; Shan, H.; Wang, S.; Zuo, J. X. et al. Surface reconstruction of Ni-rich layered cathodes: In situ doping versus ex situ doping. Small Struct. 2022, 3, 2100233.
Li, X. Q.; Zhou, L. M.; Wang, H.; Meng, D. C.; Qian, G. N.; Wang, Y.; He, Y. S.; Wu, Y. J.; Hong, Z. J.; Ma, Z. F. et al. Dopants modulate crystal growth in molten salts enabled by surface energy tuning. J. Mater. Chem. A 2021, 9, 19675–19680.
Sun, H. H.; Ryu, H. H.; Kim, U. H.; Weeks, J. A.; Heller, A.; Sun, Y. K.; Mullins, C. B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020, 5, 1136–1146.
Mao, G. H.; Luo, J.; Zhou, Q.; Xiao, F. M.; Tang, R. H.; Li, J.; Zeng, L. M.; Wang, Y. Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification. Nanoscale 2021, 13, 18741–18753.
Wang, B.; Zhang, F. L.; Zhou, X. A.; Wang, P.; Wang, J.; Ding, H.; Dong, H.; Liang, W. B.; Zhang, N. S.; Li, S. Y. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries. J. Mater. Chem. A 2021, 9, 13540–13551.
Huang, Y.; Liu, X.; Yu, R. Z.; Cao, S.; Pei, Y.; Luo, Z. G.; Zhao, Q. L.; Chang, B. B.; Wang, Y.; Wang, X. Y. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces 2019, 11, 40022–40033.
Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.
Xu, C. L.; Xiang, W.; Wu, Z. G.; Qiu, L.; Ming, Y.; Yang, W.; Yue, L. C.; Zhang, J.; Zhong, B. H.; Guo, X. D. et al. Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. Chem. Eng. J. 2021, 403, 126314.
Wang, J. L.; Liu, C. J.; Xu, G. L.; Miao, C.; Wen, M. Y.; Xu, M. B.; Wang, C. J.; Xiao, W. Strengthened the structural stability of in-situ F− doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. Chem. Eng. J. 2022, 438, 135537.
Zou, L. F.; Li, J. Y.; Liu, Z. Y.; Wang, G. F.; Manthiram, A.; Wang, C. M. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat. Commun. 2019, 10, 3447.
Zhou, K.; Xie, Q.; Li, B. H.; Manthiram, A. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 34, 229–240.
Liu, W.; Li, J. X.; Li, W. T.; Xu, H. Y.; Zhang, C.; Qiu, X. P. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 2020, 11, 3629.