Journal Home > Volume 16 , Issue 7

Affected by cobalt (Co) supply bottlenecks and high costs, Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries (LIBs). Low-cost LiNixAl1−xO2 (x ≥ 0.9) cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life. Herein, we employ a strategy of Mg/W Li/Ni dual-site co-doping LiNi0.9Al0.1O2 (named as LNA90) cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure. The Mg/W co-doped LiNi0.9Al0.1O2 cathode (named as LNAMW) exhibits high capacity retention of 94.9% at 1 C and 3.0–4.5 V after 100 cycles with 22.0% increase over the pristine cathode LNA90 and maintains the intact particle morphology. Meanwhile, the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes (Ni mol% > 80%). Our work offers a straightforward, efficient, and scalable strategy for the future design of Co-free Ni-rich cathodes to facilitate the development of economical lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-site lattice co-doping strategy regulated crystal-structure and microstructure for enhanced cycling stability of Co-free Ni-rich layered cathode

Show Author's information Lei Liu1,2Yan Zhao2,3Guanghui Jiang1,2Liang Shan1,2Zelong Yang1,2Yaoqiang Ma1,2Yingjie Zhang1,2,3Qi Meng1,2( )Peng Dong1,2( )
Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

Affected by cobalt (Co) supply bottlenecks and high costs, Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries (LIBs). Low-cost LiNixAl1−xO2 (x ≥ 0.9) cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life. Herein, we employ a strategy of Mg/W Li/Ni dual-site co-doping LiNi0.9Al0.1O2 (named as LNA90) cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure. The Mg/W co-doped LiNi0.9Al0.1O2 cathode (named as LNAMW) exhibits high capacity retention of 94.9% at 1 C and 3.0–4.5 V after 100 cycles with 22.0% increase over the pristine cathode LNA90 and maintains the intact particle morphology. Meanwhile, the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes (Ni mol% > 80%). Our work offers a straightforward, efficient, and scalable strategy for the future design of Co-free Ni-rich cathodes to facilitate the development of economical lithium-ion batteries.

Keywords: microstructure, lithium-ion batteries, Co-free Ni-rich cathode, LiNi0.9Al0.1O2, dual-site co-doping

References(48)

[1]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[2]

Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, K.; Cheng, F. Y.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 2021, 43, 132–165.

[3]

Ryu, H. H.; Sun, H. H.; Myung, S. T.; Yoon, C. S.; Sun, Y. K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ. Sci. 2021, 14, 844–852.

[4]

Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.

[5]

Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.

[6]

Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Yin, L.; Li, T. Y.; Xu, W. Q.; Jia, H.; Li, Q. Y. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 2022, 610, 67–73.

[7]

Li, W. D.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.

[8]

Lee, S.; Li, W. D.; Dolocan, A.; Celio, H.; Park, H.; Warner, J. H.; Manthiram, A. In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2100858.

[9]

Liu, H.; Wolfman, M.; Karki, K.; Yu, Y. S.; Stach, E. A.; Cabana, J.; Chapman, K. W.; Chupas, P. J. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2017, 17, 3452–3457.

[10]

Liu, L. H.; Li, M. C.; Chu, L. H.; Jiang, B.; Lin, R. X.; Zhu, X. P.; Cao, G. Z. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci. 2020, 111, 100655.

[11]

Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328.

[12]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[13]

Maiti, S.; Konar, R.; Sclar, H.; Grinblat, J.; Talianker, M.; Tkachev, M.; Wu, X. H.; Kondrakov, A.; Nessim, G. D.; Aurbach, D. Stabilizing high-voltage lithium-ion battery cathodes using functional coatings of 2D tungsten diselenide. ACS Energy Lett. 2022, 7, 1383–1391.

[14]

Liu, L.; Zhang, Y. J.; Zhao, Y.; Jiang, G. H.; Gong, R.; Li, Y.; Meng, Q.; Dong, P. Surface growth and intergranular separation of polycrystalline particles for regeneration of stable single-crystal cathode materials. ACS Appl. Mater. Interfaces 2022, 14, 29886–29895.

[15]

Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803963.

[16]

Park, N. Y.; Ryu, H. H.; Park, G. T.; Noh, T. C.; Sun, Y. K. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv. Energy Mater. 2021, 11, 2003767.

[17]

Kaneda, H.; Furuichi, Y.; Ikezawa, A.; Arai, H. Effects of aluminum substitution in nickel-rich layered LiNixAl1−xO2 (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance. J. Mater. Chem. A 2021, 9, 21981–21994.

[18]

Kim, M. G.; Sung, N. E.; Shin, H. J.; Shin, N. S.; Ryu, K. S.; Yo, C. H. Ni and oxygen K-edge XAS investigation into the chemical bonding for lithiation of LiyNi1−xAlxO2 cathode material. Electrochim. Acta 2004, 50, 501–504.

[19]

Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.

[20]

Wei, H. X.; Tang, L. B.; Huang, Y. D.; Wang, Z. Y.; Luo, Y. H.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater. Today 2021, 51, 365–392.

[21]

Yin, S. Y.; Deng, W. T.; Chen, J.; Gao, X.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021, 83, 105854.

[22]

Kim, U. H.; Park, G. T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y. S.; Shapiro, D. A.; Maglia, F.; Kim, S. J.; Lamp, P. et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ. Sci. 2021, 14, 1573–1583.

[23]

Tang, L. B.; Liu, Y.; Wei, H. X.; Yan, C.; He, Z. J.; Li, Y. J.; Zheng, J. C. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J. Energy Chem. 2021, 55, 114–123.

[24]

Bi, Y. J.; Liu, M.; Xiao, B. W.; Jiang, Y.; Lin, H.; Zhang, Z. G.; Chen, G. X.; Sun, Q.; He, H. Y.; Huang, F. et al. Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Mater. 2020, 24, 291–296.

[25]

Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.

[26]

Cui, Z. H.; Xie, Q.; Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15324–15332.

[27]

Shen, Y. B.; Yao, X. J.; Zhang, J. H.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Zhang, Y. H.; Hu, J. H.; Cheng, Y. et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900.

[28]

Min, K.; Seo, S. W.; Song, Y. Y.; Lee, H. S.; Cho, E. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys. Chem. Chem. Phys. 2017, 19, 1762–1769.

[29]

Jung, C. H.; Kim, D. H.; Eum, D.; Kim, K. H.; Choi, J.; Lee, J.; Kim, H. H.; Kang, K.; Hong, S. H. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2010095.

[30]

Xin, F. X.; Zhou, H.; Zong, Y. X.; Zuba, M.; Chen, Y.; Chernova, N. A.; Bai, J. M.; Pei, B.; Goel, A.; Rana, J. et al. What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 1377–1382.

[31]

Sun, H. H.; Kim, U. H.; Park, J. H.; Park, S. W.; Seo, D. H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y. K. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 2021, 12, 6552.

[32]

Park, N. Y.; Ryu, H. H.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles. ACS Energy Lett. 2021, 6, 4195–4202.

[33]

Kim, U. H.; Park, N. Y.; Park, G. T.; Kim, H.; Yoon, C. S.; Sun, Y. K. High-energy W-doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 2020, 33, 399–407.

[34]

Geng, C. X.; Rathore, D.; Heino, D.; Zhang, N.; Hamam, I.; Zaker, N.; Botton, G. A.; Omessi, R.; Phattharasupakun, N.; Bond, T. et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv. Energy Mater. 2022, 12, 2103067.

[35]

Meng, J. X.; Xu, L. S.; Ma, Q. X.; Yang, M. Q.; Fang, Y. Z.; Wan, G. Y.; Li, R. H.; Yuan, J. J.; Zhang, X. K.; Yu, H. J. et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.

[36]

Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

[37]

Wang, L. Z.; Qin, J.; Bai, Z. M.; Qian, H. M.; Cao, Y. Y.; Sari, H. M. K.; Xi, Y. K.; Shan, H.; Wang, S.; Zuo, J. X. et al. Surface reconstruction of Ni-rich layered cathodes: In situ doping versus ex situ doping. Small Struct. 2022, 3, 2100233.

[38]

Li, X. Q.; Zhou, L. M.; Wang, H.; Meng, D. C.; Qian, G. N.; Wang, Y.; He, Y. S.; Wu, Y. J.; Hong, Z. J.; Ma, Z. F. et al. Dopants modulate crystal growth in molten salts enabled by surface energy tuning. J. Mater. Chem. A 2021, 9, 19675–19680.

[39]

Sun, H. H.; Ryu, H. H.; Kim, U. H.; Weeks, J. A.; Heller, A.; Sun, Y. K.; Mullins, C. B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020, 5, 1136–1146.

[40]

Mao, G. H.; Luo, J.; Zhou, Q.; Xiao, F. M.; Tang, R. H.; Li, J.; Zeng, L. M.; Wang, Y. Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification. Nanoscale 2021, 13, 18741–18753.

[41]

Wang, B.; Zhang, F. L.; Zhou, X. A.; Wang, P.; Wang, J.; Ding, H.; Dong, H.; Liang, W. B.; Zhang, N. S.; Li, S. Y. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries. J. Mater. Chem. A 2021, 9, 13540–13551.

[42]

Huang, Y.; Liu, X.; Yu, R. Z.; Cao, S.; Pei, Y.; Luo, Z. G.; Zhao, Q. L.; Chang, B. B.; Wang, Y.; Wang, X. Y. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces 2019, 11, 40022–40033.

[43]

Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.

[44]

Xu, C. L.; Xiang, W.; Wu, Z. G.; Qiu, L.; Ming, Y.; Yang, W.; Yue, L. C.; Zhang, J.; Zhong, B. H.; Guo, X. D. et al. Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. Chem. Eng. J. 2021, 403, 126314.

[45]

Wang, J. L.; Liu, C. J.; Xu, G. L.; Miao, C.; Wen, M. Y.; Xu, M. B.; Wang, C. J.; Xiao, W. Strengthened the structural stability of in-situ F doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. Chem. Eng. J. 2022, 438, 135537.

[46]

Zou, L. F.; Li, J. Y.; Liu, Z. Y.; Wang, G. F.; Manthiram, A.; Wang, C. M. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat. Commun. 2019, 10, 3447.

[47]

Zhou, K.; Xie, Q.; Li, B. H.; Manthiram, A. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 34, 229–240.

[48]

Liu, W.; Li, J. X.; Li, W. T.; Xu, H. Y.; Zhang, C.; Qiu, X. P. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 2020, 11, 3629.

File
12274_2023_5479_MOESM1_ESM.pdf (1.1 MB)
12274_2023_5479_MOESM2_ESM.pdf (552.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2022
Revised: 21 December 2022
Accepted: 05 January 2023
Published: 24 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The National Natural Science Foundation of China (No. 52004116), the Major Science and Technology Special Program of Yunnan Province (No. 202202AG050003), the Applied Basic Research Plan of Yunnan Province (Nos. 202101AS070020, 202201AT070184, 202101BE070001-016, and 202001AU070039), the High-level Talent Introduction Scientific Research Start Project of KUST (No. 20190015), and the analysis and testing fund of Kunming University of Technology (No. 2021M20202202144) are gratefully acknowledged.

Return