Journal Home > Volume 16 , Issue 7

Lithium (Li) metal batteries (LMBs) can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth, unstable interfaces, and highly abundant excess Li (> 50 mAh∙cm−2). Herein, different from the artificial layer or three-dimensional (3D) matrix host constructions, various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution. As a proof of concept, a 3D interwoven high dielectric functional polymer (HDFP) nanofiber network with polar C–F dipole moments electrospun on copper (Cu) foil is designed, realizing uniform and controllable Li deposition capacity up to 5.0 mAh∙cm−2, thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA∙cm−2. More importantly, under the high-cathode loading (~ 3.1 mAh∙cm−2) and only 0.6 × excess Li (N/P ratio of 1.6), the full cells retain capacity retention of 97.4% after 200 cycles at 3.36 mA∙cm−2 and achieve high energy density (297.7 Wh∙kg−1 at cell-level) under lean electrolyte conditions (15 μL), much better than ever-reported literatures. Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions

Show Author's information Qi Kang1Zechao Zhuang2Yong Li3Yinze Zuo4Jian Wang5Yijie Liu1Chaoqun Shi6Jie Chen1Hongfei Li1Pingkai Jiang1Xingyi Huang1( )
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
Helmholtz Institute Ulm (HIU), Ulm D89081, Germany
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Lithium (Li) metal batteries (LMBs) can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth, unstable interfaces, and highly abundant excess Li (> 50 mAh∙cm−2). Herein, different from the artificial layer or three-dimensional (3D) matrix host constructions, various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution. As a proof of concept, a 3D interwoven high dielectric functional polymer (HDFP) nanofiber network with polar C–F dipole moments electrospun on copper (Cu) foil is designed, realizing uniform and controllable Li deposition capacity up to 5.0 mAh∙cm−2, thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA∙cm−2. More importantly, under the high-cathode loading (~ 3.1 mAh∙cm−2) and only 0.6 × excess Li (N/P ratio of 1.6), the full cells retain capacity retention of 97.4% after 200 cycles at 3.36 mA∙cm−2 and achieve high energy density (297.7 Wh∙kg−1 at cell-level) under lean electrolyte conditions (15 μL), much better than ever-reported literatures. Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries.

Keywords: nanofiber, high dielectric functional polymer, Li metal full cell, low N/P ratio, high-retention capacity

References(56)

[1]

Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. D. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

[2]

Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano, 2022, 16, 17729–17760.

[3]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[4]

Um, J. H.; Yu, S. H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Adv. Energy Mater. 2021, 11, 2003004.

[5]

Zhang, W. D.; Zhang, S. Q.; Fan, L.; Gao, L. N.; Kong, X. Q.; Li, S. Y.; Li, J.; Hong, X.; Lu, Y. Y. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019, 4, 644–650.

[6]

Wang, J.; Zhang, J.; Duan, S. R.; Jia, L. J.; Xiao, Q. B.; Liu, H. T.; Hu, H. M.; Cheng, S.; Zhang, Z. Y.; Li, L. G. et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano Lett. 2022, 22, 8008–8017.

[7]

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

[8]

Wang, D.; Liu, Y. M.; Li, G. W.; Qin, C. C.; Huang, L.; Wu, Y. P. Liquid metal welding to suppress Li dendrite by equalized heat distribution. Adv. Funct. Mater. 2021, 31, 2106740.

[9]
Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5215-4.
[10]
Hu, B.; Xu, J.; Fan, Z.; Xu, C.; Han, S.; Zhang, J.; Ma, L.; Ding, B.; Zhuang, Z.; Kang, Q. et al. Covalent organic framework-based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202203540.
[11]

Sun, H.; Zhu, G. Z.; Zhu, Y. M.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y. X. et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741.

[12]

Pei, F.; Fu, A.; Ye, W. B.; Peng, J.; Fang, X. L.; Wang, M. S.; Zheng, N. F. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 2019, 13, 8337–8346.

[13]

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A safe and sustainable lithium-ion-oxygen battery based on a low-cost dual-carbon electrodes architecture. Adv. Mater. 2021, 33, 2100827.

[14]

Shi, P.; Zhang, X. Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q. A review of composite lithium metal anode for practical applications. Adv. Mater. Technol. 2020, 5, 1900806.

[15]

Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

[16]

Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.

[17]

Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Il Cho, W. Langmuir–Blodgett artificial solid–electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898.

[18]

Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

[19]

Wang, Y. Y.; Wang, Z. J.; Zhao, L.; Fan, Q. N.; Zeng, X. H.; Liu, S. L.; Pang, W. K.; He, Y. B.; Guo, Z. P. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 2021, 33, 2008133.

[20]

Liu, F. F.; Wang, L. F.; Zhang, Z. W.; Shi, P. C.; Feng, Y. Z.; Yao, Y.; Ye, S. F.; Wang, H. Y.; Wu, X. J.; Yu, Y. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv. Funct. Mater. 2020, 30, 2001607.

[21]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[22]

Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

[23]

Fu, J. L.; Ji, X.; Chen, J.; Chen, L.; Fan, X. L.; Mu, D. B.; Wang, C. S. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem., Int. Ed. 2020, 59, 22194–22201.

[24]

Li, J.; Zou, P. C.; Chiang, S. W.; Yao, W. T.; Wang, Y.; Liu, P.; Liang, C. W.; Kang, F. Y.; Yang, C. A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater. 2020, 24, 700–706.

[25]

Chen, C.; Guan, J.; Li, N. W.; Lu, Y.; Luan, D. Y.; Zhang, C. H.; Cheng, G.; Yu, L.; Lou, X. W. Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes. Adv. Mater. 2021, 33, 2100608.

[26]

Zhang, K.; Liu, W.; Gao, Y. L.; Wang, X. W.; Chen, Z. X.; Ning, R. Q.; Yu, W.; Li, R. L.; Li, L.; Li, X. et al. A high-performance lithium metal battery with ion-selective nanofluidic transport in a conjugated microporous polymer protective layer. Adv. Mater. 2021, 33, 2006323.

[27]

Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; de Vasconcelos, L. S.; Huang, Z. J.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

[28]

Qian, J.; Wang, S.; Li, Y.; Zhang, M. L.; Wang, F. J.; Zhao, Y. Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. J. Lithium induced nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950.

[29]

Sun, C. Z.; Li, Y. P.; Jin, J.; Yang, J. H.; Wen, Z. Y. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J. Mater. Chem. A 2019, 7, 7752–7759.

[30]

Yue, X. Y.; Li, X. L.; Wang, W. W.; Chen, D.; Qiu, Q. Q.; Wang, Q. C.; Wu, X. J.; Fu, Z. W.; Shadike, Z.; Yang, X. Q. et al. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy 2019, 60, 257–266.

[31]

Cheng, Q.; Li, A. J.; Li, N.; Li, S.; Zangiabadi, A.; Li, T. D.; Huang, W. L.; Li, A. C.; Jin, T. W.; Song, Q. Q. et al. Stabilizing solid electrolyte–anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 2019, 3, 1510–1522.

[32]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[33]

Cui, Y. L.; Liu, S. F.; Wang, D. H.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode. Adv. Funct. Mater. 2021, 31, 2006380.

[34]

Huang, Z. J.; Zhang, C.; Lv, W.; Zhou, G. M.; Zhang, Y. B.; Deng, Y. Q.; Wu, H. L.; Kang, F. Y.; Yang, Q. H. Realizing stable lithium deposition by in situ grown Cu2S nanowires inside commercial Cu foam for lithium metal anodes. J. Mater. Chem. A 2019, 7, 727–732.

[35]

Lu, Y. Z.; Wang, J. S.; Chen, Y.; Zheng, X. Y.; Yao, H. R.; Mathur, S.; Hong, Z. S. Spatially controlled lithium deposition on silver-nanocrystals-decorated TiO2 nanotube arrays enabling ultrastable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2009605.

[36]

Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450.

[37]

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

[38]

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

[39]

Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

[40]

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

[41]

He, Y. T.; Zhang, Y. H.; Sari, H. M. K.; Wang, Z. H.; Lü, Z.; Huang, X. Q.; Liu, Z. G.; Zhang, J. J.; Li, X. F. New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy 2021, 89, 106334.

[42]

Meyerson, M. L.; Papa, P. E.; Heller, A.; Mullins, C. B. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings. ACS Nano 2021, 15, 29–46.

[43]

Wei, J. J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.

[44]

Ayala, J.; Ramirez, D.; Myers, J. C.; Lodge, T. P.; Parsons, J.; Alcoutlabi, M. Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries. J. Mater. Sci. 2021, 56, 16010–16027.

[45]

Li, J. H.; Shao, X. S.; Zhou, Q.; Li, M. Z.; Zhang, Q. Q. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 2013, 265, 663–670.

[46]

Awan, S. U.; Hasanain, S. K.; Bertino, M. F.; Jaffari, G. H. Effects of substitutional Li on the ferromagnetic response of Li co-doped ZnO: Co nanoparticles. J. Phys.: Condens. Matter 2013, 25, 156005.

[47]

Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

[48]

Zhang, L. H.; Yin, X. G.; Shen, S. B.; Liu, Y.; Li, T.; Wang, H.; Lv, X. H.; Qin, X. Y.; Chiang, S. W.; Fu, Y. Z. et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition. Nano Lett. 2020, 20, 5662–5669.

[49]

Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

[50]

Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

[51]

Fu, C. Y.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19, 758–766.

[52]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[53]

Zhan, Y. X.; Shi, P.; Ma, X. X.; Jin, C. B.; Zhang, Q. K.; Yang, S. J.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv. Energy Mater. 2022, 12, 2103291.

[54]

Di, J.; Yang, J. L.; Tian, H.; Ren, P. F.; Deng, Y. R.; Tang, W. H.; Yan, W. Q.; Liu, R. P.; Ma, J. M. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater. 2022, 32, 2200474.

[55]

Zhu, J. Q.; Cui, Z.; He, S. A.; Wang, H.; Gao, M. L.; Wang, W. Q.; Yang, J. M.; Xu, X. T.; Hu, J. Q.; Lu, A. J. et al. Inorganic-rich and flexible solid–electrolyte interphase formed over dipole–dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 2022, 32, 2205304.

[56]

Zhang, S. J.; You, J. H.; He, Z. W.; Zhong, J. J.; Zhang, P. F.; Yin, Z. W.; Pan, F.; Ling, M.; Zhang, B. K.; Lin, Z. Scalable lithiophilic/sodiophilic porous buffer layer fabrication enables uniform nucleation and growth for lithium/sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2200967.

File
12274_2023_5478_MOESM1_ESM.pdf (7.3 MB)
12274_2023_5478_MOESM2_ESM.pdf (341.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2022
Revised: 04 January 2023
Accepted: 05 January 2023
Published: 19 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Nos. 51877132, 52003153, and 22005186) and the Program of Shanghai Academic Research Leader (No. 21XD1401600).

Return