Journal Home > Volume 16 , Issue 7

Immune therapy based on programmed death-ligand 1 (PD-L1) is widely used to treat human tumors. The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor issues. Here, we for the first time synthesized the metal–organic framework (MOF) nanocrystals of rare-earth element dysprosium (Dy) coordinated with tetrakis(4-carboxyphenyl) porphyrin (TCPP), which show well-defined two-dimensional morphologies. The MOF nanocrystals of Dy-TCPP could apparently reduce PD-L1 expression in tumor cells both in vitro and in vivo, and therefore display effective tumor treatment through immune therapy without any immune checkpoint inhibitor drugs. Considering the sensitivity of TCPP ligand toward ultrasound, the prepared Dy-TCPP can also realize sonodynamic therapy (SDT) besides immune therapy. In addition, the Dy-TCPP nanocrystals can efficiently obtain T2-weight magnetic resonance imaging (MRI) of tumor sites. Our study provides the Dy-TCPP nanocrystals as promising diagnostic MRI-guided platforms for the combined treatment on tumors with SDT and immune therapy. Moreover, this strategy succeeds in reducing the elevated expression of PD-L1 in tumor cells, which might serve as a novel avenue for tumor immunotherapy in future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Porphyrin-based metal–organic framework nanocrystals for combination of immune and sonodynamic therapy

Show Author's information Sen Jiang1,§Congcong Liu1,§Qijia He2Kun Dang1Weiwei Zhang2( )Yang Tian1( )
Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing 10048, China
School of Life Science, Capital Normal University, Beijing 10048, China

§ Sen Jiang and Congcong Liu contributed equally to this work.

Abstract

Immune therapy based on programmed death-ligand 1 (PD-L1) is widely used to treat human tumors. The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor issues. Here, we for the first time synthesized the metal–organic framework (MOF) nanocrystals of rare-earth element dysprosium (Dy) coordinated with tetrakis(4-carboxyphenyl) porphyrin (TCPP), which show well-defined two-dimensional morphologies. The MOF nanocrystals of Dy-TCPP could apparently reduce PD-L1 expression in tumor cells both in vitro and in vivo, and therefore display effective tumor treatment through immune therapy without any immune checkpoint inhibitor drugs. Considering the sensitivity of TCPP ligand toward ultrasound, the prepared Dy-TCPP can also realize sonodynamic therapy (SDT) besides immune therapy. In addition, the Dy-TCPP nanocrystals can efficiently obtain T2-weight magnetic resonance imaging (MRI) of tumor sites. Our study provides the Dy-TCPP nanocrystals as promising diagnostic MRI-guided platforms for the combined treatment on tumors with SDT and immune therapy. Moreover, this strategy succeeds in reducing the elevated expression of PD-L1 in tumor cells, which might serve as a novel avenue for tumor immunotherapy in future.

Keywords: nanosheet, metal–organic frameworks (MOFs), porphyrin, immune therapy, sonodynamic therapy (SDT)

References(47)

[1]

Byun, D. J.; Wolchok, J. D.; Rosenberg, L. M.; Girotra, M. Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207.

[2]

Zhan, G. T.; Xu, Q. B.; Zhang, Z. L.; Wei, Z. H.; Yong, T. Y.; Bie, N. N.; Zhang, X. Q.; Li, X.; Li, J. Y.; Gan, L. et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates anti-PD-1 therapy in hypoxic tumors. Nano Today 2021, 38, 101195.

[3]

Xu, Y. D.; Ma, S.; Zhao, J. Y.; Si, X. H.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res. 2022, 15, 1183–1192.

[4]

Chen, Q.; Wang, C.; Chen, G. J.; Hu, Q. Y.; Gu, Z. Delivery strategies for immune checkpoint blockade. Adv. Healthcare Mater. 2018, 7, 1800424.

[5]

Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

[6]

Pan, J. M.; Li, X. L.; Shao, B. F.; Xu, F. N.; Huang, X. H.; Guo, X.; Zhou, S. B. Self-blockade of PD-L1 with bacteria-derived outer-membrane vesicle for enhanced cancer immunotherapy. Adv. Mater. 2022, 34, 2106307.

[7]

Filippone, A.; Lanza, M.; Mannino, D.; Raciti, G.; Colarossi, C.; Sciacca, D.; Cuzzocrea, S.; Paterniti, I. PD1/PD-L1 immune checkpoint as a potential target for preventing brain tumor progression. Cancer Immunol. Immunother. 2022, 71, 2067–2075.

[8]

Guo, Z. P.; Hu, Y. Y.; Zhao, M. Y.; Hao, K.; He, P.; Tian, H. Y.; Chen, X. S.; Chen, M. W. Prodrug-based versatile nanomedicine with simultaneous physical and physiological tumor penetration for enhanced cancer chemo-immunotherapy. Nano Lett. 2021, 21, 3721–3730.

[9]

DePeaux, K.; Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 2021, 21, 785–797.

[10]

Ramos-Casals, M.; Brahmer, J. R.; Callahan, M. K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M. A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M. E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38.

[11]

Wright, J. J.; Powers, A. C.; Johnson, D. B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399.

[12]

Sullivan, R. J.; Weber, J. S. Immune-related toxicities of checkpoint inhibitors: Mechanisms and mitigation strategies. Nat. Rev. Drug Discov. 2022, 21, 495–508.

[13]

Jing, Y.; Liu, J.; Ye, Y. Q.; Pan, L.; Deng, H.; Wang, Y. S.; Yang, Y.; Diao, L. X.; Lin, S. H.; Mills, G. B. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 2020, 11, 4946.

[14]

Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.

[15]

Chen, J.; Jiang, C. C.; Jin, L.; Zhang, X. D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 2016, 27, 409–416.

[16]

Lucibello, G.; Mograbi, B.; Milano, G.; Hofman, P.; Brest, P. PD-L1 regulation revisited: Impact on immunotherapeutic strategies. Trends Mol. Med. 2021, 27, 868–881.

[17]

Cai, S. X.; Chen, Z. Y.; Wang, Y. J.; Wang, M.; Wu, J. Y.; Tong, Y. H.; Chen, L. L.; Lu, C. H.; Yang, H. H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics 2021, 11, 1970–1981.

[18]
Gu, J. J.; Sun, J. Y.; Liu, Y.; Chong, G. W.; Li, Y. Y.; Dong, H. Q. Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4620-z.
[19]

An, L.; Wang, X.; Rui, X.; Lin, J.; Yang, H.; Tian, Q.; Tao, C.; Yang, S. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics. Angew. Chem., Int. Ed. 2018, 57, 15782–15786.

[20]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[21]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[22]

Zou, M. Z.; Liu, W. L.; Li, C. X.; Zheng, D. W.; Zeng, J. Y.; Gao, F.; Ye, J. J.; Zhang, X. Z. A multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 2018, 14, 1801120.

[23]

Poon, W.; Kingston, B. R.; Ouyang, B.; Ngo, W.; Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 2020, 15, 819–829.

[24]

Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.

[25]

Ouyang, B.; Poon, W.; Zhang, Y. N.; Lin, Z. P.; Kingston, B. R.; Tavares, A. J.; Zhang, Y. W.; Chen, J.; Valic, M. S.; Syed, A. M. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020, 19, 1362–1371.

[26]

Ma, A. Q.; Chen, H. Q.; Cui, Y. H.; Luo, Z. Y.; Liang, R. J.; Wu, Z. H.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M. B. et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small 2019, 15, 1804028.

[27]

Chen, J. J.; Zhu, Y. F.; Kaskel, S. Porphyrin-based metal–organic frameworks for biomedical applications. Angew. Chem., Int. Ed. 2021, 60, 5010–5035.

[28]

Zhao, Y. W.; Wang, J. N.; Cai, X.; Ding, P.; Lv, H. Y.; Pei, R. J. Metal–organic frameworks with enhanced photodynamic therapy: Synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl. Mater. Interfaces 2020, 12, 23697–23706.

[29]

Wan, S. S.; Cheng, Q.; Zeng, X.; Zhang, X. Z. A Mn(III)-sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 2019, 13, 6561–6571.

[30]

Wang, C.; Cao, F. J.; Ruan, Y. D.; Jia, X. D.; Zhen, W. Y.; Jiang, X. E. Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 9846–9850.

[31]

Zhao, Y. W.; Kuang, Y.; Liu, M.; Wang, J. N.; Pei, R. J. Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield. Chem. Mater. 2018, 30, 7511–7520.

[32]

Jiang, S.; He, Q. J.; Li, C. C.; Dang, K.; Ye, L.; Zhang, W. W.; Tian, Y. Employing the thiol-ene click reaction via metal–organic frameworks for integrated sonodynamic–starvation therapy as an oncology treatment. Sci. China Mater. 2022, 65, 1112–1121.

[33]

Wang, Y.; Zhou, X. T.; Dong, W. X.; Zhong, Q. S.; Mo, X. X.; Li, H. Light responsive Fe-TCPP@ICG for hydrogen peroxide detection and inhibition of tumor cell growth. Biosens. Bioelectron. 2022, 200, 113931.

[34]

Xu, W. L.; Kattel, K.; Park, J. Y.; Chang, Y. M.; Kim, T. J.; Lee, G. H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys. 2012, 14, 12687–12700.

[35]

Hu, H.; Zhang, Y. F.; Shukla, S.; Gu, Y. N.; Yu, X.; Steinmetz, N. F. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano 2017, 11, 9249–9258.

[36]

Kattel, K.; Park, J. Y.; Xu, W. L.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Lee, J. J.; Jin, S.; Baeck, J. S. et al. A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces 2011, 3, 3325–3334.

[37]

Zha, Q. Z.; Rui, X.; Wei, T. T.; Xie, Y. S. Recent advances in the design strategies for porphyrin-based coordination polymers. CrystEngComm 2014, 16, 7371–7384.

[38]

Lipstman, S.; Muniappan, S.; George, S.; Goldberg, I. Framework coordination polymers of tetra(4-carboxyphenyl)porphyrin and lanthanide ions in crystalline solids. Dalton Trans. 2007, 3273–3281.

[39]

Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal–organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

[40]

Tong, S.; Cinelli, M. A.; El-Sayed, N. S.; Huang, H.; Patel, A.; Silverman, R. B.; Yang, S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci. Rep. 2022, 12, 1701.

[41]

Pistillo, M. P.; Carosio, R.; Banelli, B.; Morabito, A.; Mastracci, L.; Ferro, P.; Varesano, S.; Venè, R.; Poggi, A.; Roncella, S. IFN-γ upregulates membranous and soluble PD-L1 in mesothelioma cells: Potential implications for the clinical response to PD-1/PD-L1 blockade. Cell. Mol. Immunol. 2020, 17, 410–411.

[42]

Shang, M.; Yang, H. J.; Yang, R.; Chen, T.; Fu, Y.; Li, Y. Y.; Fang, X. L.; Zhang, K. J.; Zhang, J. J.; Li, H. et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat. Commun. 2021, 12, 1940.

[43]

Liu, Y. L.; Lu, M. Z.; Chen, J. N.; Li, S. Q.; Deng, Y. Y.; Yang, S. F.; Ou, Q.; Li, J.; Gao, P.; Luo, Z. R. et al. Extracellular vesicles derived from lung cancer cells exposed to intermittent hypoxia upregulate programmed death ligand 1 expression in macrophages. Sleep Breath. 2022, 26, 893–906.

[44]

Pei, S. Z.; You, S. J.; Ma, J.; Chen, X. D.; Ren, N. Q. Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. 2020, 54, 13333–13343.

[45]

Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J. O.; Jeong, J. H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol. Pharmaceutics 2019, 16, 1184–1199.

[46]

Feng, D. F.; Qin, B.; Pal, K.; Sun, L.; Dutta, S.; Dong, H. D.; Liu, X.; Mukhopadhyay, D.; Huang, S. B.; Sinicrope, F. A. BRAFV600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 2019, 38, 6752–6766.

[47]

Tanaka, E.; Miyakawa, Y.; Kishikawa, T.; Seimiya, T.; Iwata, T.; Funato, K.; Odawara, N.; Sekiba, K.; Yamagami, M.; Suzuki, T. et al. Expression of circular RNA CDR1-AS in colon cancer cells increases cell surface PD-L1 protein levels. Oncol. Rep. 2019, 42, 1459–1466.

File
12274_2023_5477_MOESM1_ESM.pdf (990.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2022
Revised: 30 December 2022
Accepted: 01 January 2023
Published: 22 February 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52172096) and the Foundation of CNU (No. 0092255073).

Return