Journal Home > Volume 16 , Issue 5

Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for real-time toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of NH3 gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT NH3 gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (S@g-C3N4 QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-C3N4 QD/LGS SAW sensor to NH3 (500 ppb) at RT is dramatically enhanced by ~ 4.5-fold with a low detection limit (~ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented NH3 detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to NH3 are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-C3N4 QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-C3N4 QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-C3N4 based high responsive RT SAW gas sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots

Show Author's information Kedhareswara Sairam Pasupuleti1Sourabh S. Chougule2Devthade Vidyasagar3Na-hyun Bak1Namgee Jung2Young-Heon Kim4Jong-Hee Lee5Song-Gang Kim6Moon-Deock Kim1,7( )
Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
Department of Materials Science and Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
Department of Digital Agricultural Promotion, Agricultural Cooperative University, Goyang-si, Gyeonggi-do 10292, Republic of Korea
Department of Smart Information Technology, Joonbu University, 305 Donghen-ro, Goyang, Kyunggi-do 10279, Republic of Korea
Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

Abstract

Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for real-time toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of NH3 gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT NH3 gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (S@g-C3N4 QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-C3N4 QD/LGS SAW sensor to NH3 (500 ppb) at RT is dramatically enhanced by ~ 4.5-fold with a low detection limit (~ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented NH3 detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to NH3 are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-C3N4 QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-C3N4 QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-C3N4 based high responsive RT SAW gas sensors.

Keywords: quantum dots, sulfur doping, electroacoustic effect, two-dimensional graphitic carbon nitride (2D g-C3N4), surface acoustic wave (SAW) sensor, NH3 gas

References(63)

[1]

Lv, D. W.; Shen, W. F.; Chen, W. G.; Tan, R. Q.; Xu, L.; Song, W. J. PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature. Sens. Actuators B: Chem. 2021, 328, 129085.

[2]

Hien, H. T.; Thu, D. T. A.; Ngan, P. Q.; Thai, G. H.; Trung, D. T.; Trung, T.; Tan, M. M.; Giang, H. T. High NH3 sensing performance of NiO/PPy hybrid nanostructures. Sens. Actuators B: Chem. 2021, 340, 129986.

[3]

Pilliadugula, R.; Gopalakrishnan, N. Room temperature ammonia sensing performances of pure and Sn doped β-Ga2O3. Mater. Sci. Semicond. Process. 2021, 135, 106086.

[4]

Han, D.; Han, X. M.; Zhang, X. Q.; Wang, W. L.; Li, D. H.; Li, H. W.; Sang, S. B. Highly sensitive and rapidly responding room-temperature NH3 gas sensor that is based on exfoliated black phosphorus. Sens. Actuators B: Chem. 2022, 367, 132038.

[5]

Zhu, H.; Xie, D.; Lin, S. X.; Zhang, W. T.; Yang, Y. W.; Zhang, R. J.; Shi, X.; Wang, H. Y.; Zhang, Z. Q.; Zu, X. T. et al. Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film. Sens. Actuators B: Chem. 2021, 344, 130175.

[6]

Wu, M.; He, M.; Hu, Q. K.; Wu, Q. H.; Sun, G.; Xie, L. L.; Zhang, Z. Y.; Zhu, Z. G.; Zhou, A. G. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770.

[7]

Liu, A.; Lv, S. Y.; Zhao, L. J.; Liu, F. M.; Wang, J.; You, R.; Yang, Z. J.; He, J. M.; Jiang, L.; Wang, C. G. et al. Room temperature flexible NH3 sensor based on polyaniline coated Rh-doped SnO2 hollow nanotubes. Sens. Actuators B: Chem. 2021, 330, 129313.

[8]

Hu, Q.; Wang, Z. M.; Chang, J. Y.; Wan, P.; Huang, J. H.; Feng, L. Design and preparation of hollow NiO sphere-polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuators B: Chem. 2021, 344, 130179.

[9]

Yu, M.; Zeng, S. J.; Wang, Z. X.; Hu, Z. Y.; Dong, H. F.; Nie, Y.; Ren, B. Z.; Zhang, X. P. Protic ionic-liquid-supported activated carbon with hierarchical pores for efficient NH3 adsorption. ACS Sustainable Chem. Eng. 2019, 7, 11769–11777.

[10]

Hung, T. T.; Chung, M. H.; Wu, J. Y.; Shen, C. Y. A room-temperature surface acoustic wave ammonia sensor based on rGO/DPP2T-TT composite films. Sensors 2022, 22, 5280.

[11]

Wang, J. S.; Che, J.; Qiao, C. C.; Niu, B.; Zhang, W. T.; Han, Y. Y.; Fu, Y. Q.; Tang, Y. L. Highly porous Fe2O3-SiO2 layer for acoustic wave based H2S sensing: Mass loading or elastic loading effects? Sens. Actuators B: Chem. 2022, 367, 132160.

[12]

Xiong, S.; Zhou, J.; Wu, J. H.; Li, H. L.; Zhao, W.; He, C. G.; Liu, Y.; Chen, Y. Q.; Fu, Y. Q.; Duan, H. G. High performance acoustic wave nitrogen dioxide sensor with ultraviolet activated 3D porous architecture of Ag-decorated reduced graphene oxide and polypyrrole aerogel. ACS Appl. Mater. Interfaces 2021, 13, 42094–42103.

[13]

Ji, Z. B.; Zhou, J.; Lin, H. M.; Wu, J. H.; Zhang, D. H.; Garner, S.; Gu, A.; Dong, S. R.; Fu, Y. Q.; Duan, H. G. Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications. Microsyst. Nanoeng. 2021, 7, 97.

[14]

Paschke, B.; Wixforth, A.; Denysenko, D.; Volkmer, D. Fast surface acoustic wave-based sensors to investigate the kinetics of gas uptake in ultra-microporous frameworks. ACS Sens. 2017, 2, 740–747.

[15]

Long, G. D.; Guo, Y. J.; Li, W.; Tang, Q. B.; Zu, X. T.; Ma, J. Y.; Du, B.; Fu, Y. Q. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron. Eng. 2020, 222, 111201.

[16]

Sun, X. Y.; Chen, T. T.; Liang, Y.; Zhang, C.; Zhai, S. P.; Sun, J. H.; Wang, W. Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sens. Actuators B Chem. 2023, 375, 132884.

[17]

Li, W.; Guo, Y. J.; Tang, Y. L.; Zu, X. T.; Ma, J. Y.; Wang, L.; Fu, Y. Q. Room-temperature ammonia sensor based on ZnO nanorods deposited on ST-cut quartz surface acoustic wave devices. Sensors 2017, 17, 1142.

[18]

Xu, X. F.; Zu, X. T.; Ao, D. Y.; Yu, J. X.; Xiang, X.; Xie, W. F.; Tang, Y. L.; Li, S. A.; Fu, Y. Q. NH3-sensing mechanism using surface acoustic wave sensor with AlO(OH) film. Nanomaterials 2019, 9, 1732.

[19]

Tang, Q. B.; Guo, Y. J.; Tang, Y. L.; Long, G. D.; Wang, J. L.; Li, D. J.; Zu, X. T.; Ma, J. Y.; Wang, L.; Torun, H. et al. Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature. J. Mater. Sci. 2019, 54, 11925–11935.

[20]

Tang, Y. L.; Ao, D. Y.; Li, W.; Zu, X. T.; Li, S. A.; Fu, Y. Q. NH3 sensing property and mechanisms of quartz surface acoustic wave sensors deposited with SiO2, TiO2, and SiO2-TiO2 composite films. Sens. Actuators B: Chem. 2018, 254, 1165–1173.

[21]

Devkota, J.; Mao, E.; Greve, D. W.; Ohodnicki, P. R.; Baltrus, J. A surface acoustic wave hydrogen sensor with tin doped indium oxide layers for intermediate temperatures. Sens. Actuators B: Chem. 2022, 354, 131229.

[22]

Pasupuleti, K. S.; Bak, N. H.; Peta, K. R.; Kim, S. G.; Cho, H. D.; Kim, M. D. Enhanced sensitivity of langasite-based surface acoustic wave CO gas sensor using highly porous Ppy@PEDOT: PSS hybrid nanocomposite. Sens. Actuators B: Chem. 2022, 363, 131786.

[23]

Yang, J.; Wang, T. R.; Zhu, C. S.; Yin, X. Y.; Dong, P. T.; Wu, X. Z. AgNWs@ SnO2/CuO nanocomposites for ultra-sensitive SO2 sensing based on surface acoustic wave with frequency-resistance dual-signal display. Sens. Actuators B Chem. 2023, 375, 132966.

[24]

Devabharathi, N.; Umarji, A. M.; Dasgupta, S. Fully inkjet-printed mesoporous SnO2-based ultrasensitive gas sensors for trace amount NO2 detection. ACS Appl. Mater. Interfaces 2020, 12, 57207–57217.

[25]

Wang, Y. P.; Li, Y. K.; Zhao, J. L.; Wang, J. S.; Li, Z. J. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. Int. J. Hydrogen Energy 2019, 44, 618–628.

[26]

Li, H. L.; Huang, G. Z.; Xu, H. Z.; Yang, Z. Q.; Xu, X. M.; Li, J. Y.; Qu, A. L.; Chen, Y. Enhancing photodegradation activity of g-C3N4 via decorating with S-doped carbon nitride quantum dots by in situ polymerization. J. Solid State Chem. 2020, 292, 121705.

[27]

Mo, C. Q.; Zhang, Q. Y.; Li, H. L.; Yang, Z. Q.; Xu, H. Z.; Huang, G. Z.; Qu, A. L.; Chen, Y. Enhanced photodegradation ability and mechanism study of g-C3N4 by dual modified with sulfur-containing quantum dots doping after oxidization. J. Photochem. Photobiol. A: Chem. 2021, 419, 113462.

[28]

Sethuraman, S.; Marimuthu, A.; Kattamuthu, R.; Karuppasamy, G. Highly surface active niobium doped g-C3N4/g-C3N4 heterojunction interface towards superior photocatalytic and selective ammonia response. Appl. Surf. Sci. 2021, 561, 150077.

[29]

Reddeppa, M.; KimPhung, N. T.; Murali, G.; Pasupuleti, K. S.; Park, B. G.; In, I.; Kim, M. D. Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level. Sens. Actuators B: Chem. 2021, 329, 129175.

[30]

Pasupuleti, K. S.; Nam, D. J.; Bak, N. H.; Reddeppa, M.; Oh, J. E.; Kim, S. G.; Cho, H. D.; Kim, M. D. Highly sensitive g-C3N4 nanosheets as a potential candidate for the effective detection of NO2 gas via langasite-based surface acoustic wave gas sensor. J. Mater. Chem. C 2022, 10, 160–170.

[31]

Lin, Y. R.; Dizon, G. V. C.; Yamada, K.; Liu, C. Y.; Venault, A.; Lin, H. Y.; Yoshida, M.; Hu, C. Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J. Colloid Interface Sci. 2020, 567, 202–212.

[32]

Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W.; Yu, J. G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B: Environ. 2015, 176–177, 44–52.

[33]

Dai, L.; Sun, F. Z.; Fu, P.; Li, H. T. Enhanced photocatalytic hydrogen evolution and ammonia sensitivity of double-heterojunction g-C3N4/TiO2/CuO. RSC Adv. 2022, 12, 13381–13392.

[34]

Wang, W. J.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Zhou, C. Y.; Xiong, W. P.; Yang, Y.; Lei, L.; Liu, Y. et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. Chem. Eng. J. 2019, 378, 122132.

[35]

Sharma, N.; Sharma, N.; Srinivasan, P.; Kumar, S.; Rayappan, J. B. B.; Kailasam, K. Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room temperature. J. Mater. Chem. A 2018, 6, 18389–18395.

[36]

Pattnayak, S.; Sahoo, U.; Choudhury, S.; Hota, G. Silver nanoparticles embedded sulfur doped graphitic carbon nitride quantum dots: A fluorescent nanosensor for detection of mercury ions in aqueous media. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 648, 129377.

[37]

Li, W.; Guo, Y. J.; Tang, Q. B.; Zu, X. T.; Ma, J. Y.; Wang, L.; Tao, K.; Torun, H.; Fu, Y. Q. Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices. Surf. Coat. Technol. 2019, 363, 419–425.

[38]

Kadam, A. N.; Moniruzzaman, M.; Lee, S. W. Dual functional S-doped g-C3N4 pinhole porous nanosheets for selective fluorescence sensing of Ag+ and visible-light photocatalysis of dyes. Molecules 2019, 24, 450.

[39]

Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie, Z. G.; Sun, Z. C. Highly luminescent S,N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277.

[40]

Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W. P.; Shao, L. X. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(II) detection and bioimaging. J. Mater. Chem. C 2015, 3, 73–78.

[41]

Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006–15012.

[42]

Zhou, L. C.; Hu, Z. X.; Wang, P.; Gao, N. B.; Zhai, B. H.; Ouyang, M.; Zhang, G. Z.; Chen, B. B.; Luo, J. T.; Jiang, S. L. et al. Enhanced NO2 sensitivity of SnO2 SAW gas sensors by facet engineering. Sens. Actuators B: Chem. 2022, 361, 131735.

[43]

Pasupuleti, K. S.; Reddeppa, M.; Chougule, S. S.; Bak, N. H.; Nam, D. J.; Jung, N.; Cho, H. D.; Kim, S. G.; Kim, M. D. High performance langasite based SAW NO2 gas sensor using 2D g-C3N4@ TiO2 hybrid nanocomposite. J. Hazard. Mater. 2022, 427, 128174.

[44]

Devabharathi, N.; Parasuraman, R.; Umarji, A. M.; Dasgupta, S. Ultra-high response ethanol sensors from fully-printed co-continuous and mesoporous tin oxide thin films. J. Alloys Compd. 2021, 865, 158815.

[45]

Šetka, M.; Bahos, F. A.; Matatagui, D.; Kral, Z.; Gràcia, I.; Drbohlavová, J.; Vallejos, S. Polypyrrole based love-wave gas sensor devices with enhanced properties to ammonia. Proceedings 2018, 2, 786.

[46]

Guo, Y. J.; Long, G. D.; Tang, Y. L.; Wang, J. L.; Tang, Q. B.; Zu, X. T.; Ma, J. Y.; Du, B.; Torun, H.; Fu, Y. Q. Surface acoustic wave ammonia sensor based on SiO2-SnO2 composite film operated at room temperature. Smart Mater. Struct. 2020, 29, 095003.

[47]

Lim, J. B.; Reddeppa, M.; Nam, D.; Pasupuleti, K. S.; Bak, N. H.; Kim, S. G.; Cho, H. D.; Kim, M. D. Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite. Smart Mater. Struct. 2021, 30, 095016.

[48]

Constantinoiu, I.; Miu, D.; Viespe, C. Surface acoustic wave sensors for ammonia detection at room temperature based on SnO2/Co3O4 bilayers. J. Sens. 2019, 2019, 8203810.

[49]

Tang, Y. L.; Xu, X. F.; Han, S. B.; Cai, C.; Du, H. R.; Zhu, H.; Zu, X. T.; Fu, Y. Q. ZnO-Al2O3 nanocomposite as a sensitive layer for high performance surface acoustic wave H2S gas sensor with enhanced elastic loading effect. Sens. Actuators B: Chem. 2020, 304, 127395.

[50]

Tang, Y. L.; Wu, W.; Wang, B. J.; Dai, X. C.; Xie, W. F.; Yang, Y. W.; Zhang, R. J.; Shi, X.; Zhu, H.; Luo, J. et al. H2S gas sensing performance and mechanisms using CuO-Al2O3 composite films based on both surface acoustic wave and chemiresistor techniques. Sens. Actuators B: Chem. 2020, 325, 128742.

[51]

Li, D. J.; Zu, X. T.; Ao, D. Y.; Tang, Q. B.; Fu, Y. Q.; Guo, Y. J.; Bilawal, K.; Faheem, M. B.; Li, L.; Li, S. A. et al. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol-gel CuO films. Sens. Actuators B: Chem. 2019, 294, 55–61.

[52]
Zhou, L. C.; Zhai, B. H.; Hu, Z. X.; Zhang, M. Q.; Li, L.; Wang, X. X.; Zhang, G. Z.; Luo, J. T.; Li, H. L.; Chen, B. B. et al. Integrated sensor based on acoustics-electricity-mechanics coupling effect for wireless passive gas detection. Nano Res. 2023, 16, 3130–3141.
[53]

Jaiswal, J.; Singh, P.; Chandra, R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens. Actuators B: Chem. 2021, 327, 128862.

[54]

Tiwary, A.; Rout, S. S.; Behera, B. Design and analysis of various characteristics of a MEMS-based PIB/CNT/LiNbO3 multilayered SAW sensor for CO2 gas detection. Trans. Electr. Electron. Mater. 2022, 23, 609–617.

[55]

Zheng, P.; Greve, D. W.; Oppenheim, I. J. Langasite surface acoustic wave gas sensors: Modeling and verification. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2013, 60, 579–586.

[56]
Asri, M. I. A.; Hasan, M. N.; Yunos, Y. M.; Nafea, M.; Ali, M. S. M. Silicon nanostructure based surface acoustic wave gas sensor. In 2022 IEEE Sensors, Dallas, USA, 2022, pp 1–4.
[57]
Oberoi, A.; Sinha, R. A novel MEMS based surface acoustic wave gas sensor for carbon dioxide detection in hot-process areas. In Proceedings of International Electronic Conference on Sensors and Applications, 2014, e001.
[58]

Ouyang, C.; Chen, Y. X.; Qin, Z. Y.; Zeng, D. W.; Zhang, J.; Wang, H.; Xie, C. S. Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci. 2018, 455, 45–52.

[59]

Jin, L.; Wu, C. L.; Wei, K.; He, L. F.; Gao, H.; Zhang, H. X.; Zhang, K.; Asiri, A. M.; Alamry, K. A.; Yang, L. et al. Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 2020, 3, 12071–12079.

[60]

Safe, A. M.; Nikfarjam, A.; Hajghassem, H. UV enhanced ammonia gas sensing properties of PANI/TiO2 core–shell nanofibers. Sens. Actuators B: Chem. 2019, 298, 126906.

[61]

Yu, S. J.; Zhang, D. Z.; Zhang, Y.; Pan, W. J.; Meteku, B. E.; Zhang, F. D.; Zeng, J. B. Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. Nanoscale 2020, 12, 18815–18825.

[62]

Li, X. G.; Li, X. X.; Li, Z.; Wang, J.; Zhang, J. W. WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B: Chem. 2017, 240, 273–277.

[63]

Liu, L. C.; Fei, T.; Guan, X.; Lin, X. Z.; Zhao, H. R.; Zhang, T. Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sens. Actuators B: Chem. 2020, 320, 128318.

File
12274_2023_5472_MOESM1_ESM.pdf (941 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2022
Revised: 20 December 2022
Accepted: 03 January 2023
Published: 26 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2013385), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF- 2020R1A6A1A03047771), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET), Korea Smart Farm Research and Development Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food, and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (No. 421029-4).

Return