Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Exosomes make a significant contribution during stem cell-based therapy due to the abundant contents. Accumulating evidence implies exosomes can act as potential biological nano agents. We herein propose hypoxic preconditioning for neural stem cells (NSCs) that could produce hypoxic exosomes for efficient treatment of ischemic stroke. Hypoxic preconditioning on NSCs significantly altered the miRNAs encapsulated in exosomes. Notably, hypoxic exosomes could target the injured brain to regulate the microenvironment to inhibit neuroinflammation and promote blood–brain barrier permeability recovery. Additionally, the autologous NSCs in Nestin-CreER mice could be activated by hypoxic exosomes to facilitate nerve regeneration. After hypoxic preconditioning, exosomes further exerted therapeutic effects on both survival (25%) and behavioral outcomes in ischemic stroke mice. Overall, hypoxic preconditioning NSCs can produce effective nano agent and may represent a promising strategy for clinical neurorestorative therapy.
Virani, S. S.; Alonso, A.; Aparicio, H. J.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Cheng, S.; Delling, F. N. et al. Heart disease and stroke statistics-2021 update. Circulation 2021, 143, e254–e743.
Lu, Y. F.; Li, C.; Chen, Q. J.; Liu, P. X.; Guo, Q.; Zhang, Y.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Liang, D. H. et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv. Mater. 2019, 31, 1808361.
Wu, H. H.; Zhou, Y.; Tabata, Y.; Gao, J. Q. Mesenchymal stem cell-based drug delivery strategy: From cells to biomimetic. J. Control. Release 2019, 294, 102–113.
Beretta, S.; Cunningham, K. M.; Haus, D. L.; Gold, E. M.; Perez, H.; López-Velázquez, L.; Cummings, B. J. Effects of human ES-derived neural stem cell transplantation and kindling in a rat model of traumatic brain injury. Cell Transplant. 2017, 26, 1247–1261.
Jiang, X. C.; Xiang, J. J.; Wu, H. H.; Zhang, T. Y.; Zhang, D. P.; Xu, Q. H.; Huang, X. L.; Kong, X. L.; Sun, J. H.; Hu, Y. L. et al. Neural stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatment of ischemic stroke. Adv. Mater. 2019, 31, 1807591.
Zhang, T. Y.; Li, F. Y.; Xu, Q. H.; Wang, Q. Y.; Jiang, X. C.; Liang, Z. Y.; Liao, H. W.; Kong, X. L.; Liu, J. N.; Wu, H. H. et al. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Adv. Funct. Mater. 2019, 29, 1900603.
Huang, B.; Jiang, X. C.; Zhang, T. Y.; Hu, Y. L.; Tabata, Y.; Chen, Z.; Pluchino, S.; Gao, J. Q. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int. J. Pharmaceut. 2017, 531, 90–100.
Lee, T. J.; Bhang, S. H.; Yang, H. S.; La, W. G.; Yoon, H. H.; Shin, J. Y.; Seong, J. Y.; Shin, H.; Kim, B. S. Enhancement of long-term angiogenic efficacy of adipose stem cells by delivery of FGF2. Microvasc. Res. 2012, 84, 1–8.
Guo, Z. Y.; Sun, X.; Xu, X. L.; Zhao, Q.; Peng, J.; Wang, Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen. Res. 2015, 10, 651–658.
Xu, C.; Fu, F.; Li, X. H.; Zhang, S. Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int. J. Neurosci. 2017, 127, 1124–1135.
Nagaishi, K.; Mizue, Y.; Chikenji, T.; Otani, M.; Nakano, M.; Konari, N.; Fujimiya, M. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep. 2016, 6, 34842.
Li, L. M.; Zhang, Y.; Mu, J. F.; Chen, J. C.; Zhang, C. Y.; Cao, H. C.; Gao, J. Q. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020, 20, 4298–4305.
Mu, J. F.; Li, L. M.; Wu, J. H.; Huang, T. C.; Zhang, Y.; Cao, J.; Ma, T.; Chen, J. C.; Zhang, C. Y.; Zhang, X. Q. et al. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury. Biomater. Sci. 2022, 10, 1803–1811.
Jiang, X. C.; Gao, J. Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharmaceut. 2017, 521, 167–175.
Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G. C. E.; El-Baba, M. D.; Saxena, P.; Ausländer, S.; Tan, K. R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305.
Liu, W.; Rong, Y. L.; Wang, J. X.; Zhou, Z.; Ge, X. H.; Ji, C. Y.; Jiang, D. D.; Gong, F. Y.; Li, L. W.; Chen, J. et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflamm. 2020, 17, 47.
Panigrahi, G. K.; Praharaj, P. P.; Peak, T. C.; Long, J.; Singh, R.; Rhim, J. S.; Elmageed, Z. Y. A.; Deep, G. Hypoxia-induced exosome secretion promotes survival of African–American and Caucasian prostate cancer cells. Sci. Rep. 2018, 8, 3853.
Zhang, X. R.; Huang, Y. Z.; Gao, H. W.; Jiang, Y. L.; Hu, J. G.; Pi, J. K.; Chen, A. J.; Zhang, Y.; Zhou, L.; Xie, H. Q. Hypoxic preconditioning of human urine-derived stem cell-laden small intestinal submucosa enhances wound healing potential. Stem Cell Res. Ther. 2020, 11, 150.
Ge, L. T.; Xun, C. F.; Li, W. S.; Jin, S. Y.; Liu, Z.; Zhuo, Y.; Duan, D.; Hu, Z. P.; Chen, P.; Lu, M. Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. J. Nanobiotechnol. 2021, 19, 380.
Thery, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G. K. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750.
Sjoqvist, S.; Kasai, Y.; Shimura, D.; Ishikawa, T.; Ali, N.; Iwata, T.; Kanai, N. Oral keratinocyte-derived exosomes regulate proliferation of fibroblasts and epithelial cells. Biochem. Biophy. Res. Commun. 2019, 514, 706–712.
Lobb, R. J.; Becker, M.; Wen, S. W.; Wong, C. S. F.; Wiegmans, A. P.; Leimgruber, A.; Möller, A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 2015, 4, 27031.
Nalamolu, K. R.; Venkatesh, I.; Mohandass, A.; Klopfenstein, J. D.; Pinson, D. M.; Wang, D. Z.; Kunamneni, A.; Veeravalli, K. K. Exosomes secreted by the cocultures of normal and oxygen-glucose-deprived stem cells improve post-stroke outcome. Neuromol. Med. 2019, 21, 529–539.
Shi, Y. J.; Zhang, L. L.; Pu, H. J.; Mao, L. L.; Hu, X. M.; Jiang, X. Y.; Xu, N.; Stetler, R. A.; Zhang, F.; Liu, X. R. et al. Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat. Commun. 2016, 7, 10523.
Eckert, A.; Huang, L.; Gonzalez, R.; Kim, H. S.; Hamblin, M. H.; Lee, J. P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl. Med. 2015, 4, 841–851.
Farr, T. D.; Liu, L.; Colwell, K. L.; Whishaw, I. Q.; Metz, G. A. Bilateral alteration in stepping pattern after unilateral motor cortex injury: A new test strategy for analysis of skilled limb movements in neurological mouse models. J. Neurosci. Methods 2006, 153, 104–113.
Imitola, J.; Raddassi, K.; Park, K. I.; Mueller, F. J.; Nieto, M.; Teng, Y. D.; Frenkel, D.; Li, J. X.; Sidman, R. L.; Walsh, C. A. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 18117–18122.
Ma, J. N.; Zhang, S. Q.; Liu, J.; Liu, F. Y.; Du, F. Y.; Li, M.; Chen, A. T.; Bao, Y. M.; Suh, H. W.; Avery, J. et al. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small 2019, 15, 1902011.
Wang, F. F.; Ge, J. Y.; Huang, S. L.; Zhou, C. L.; Sun, Z. K.; Song, Y.; Xu, Y. J.; Ji, Y. KLF5/LINC00346/miR-148a-3p axis regulates inflammation and endothelial cell injury in atherosclerosis. Int. J. Mol. Med. 2021, 48, 152.
Su, B.; Wang, X. T.; Sun, Y. H.; Long, M. Y.; Zheng, J.; Wu, W. H.; Li, L. miR-30e-3p promotes cardiomyocyte autophagy and inhibits apoptosis via regulating Egr-1 during ischemia/hypoxia. BioMed Res. Int 2020, 2020, 7231243.
Sun, J.; Nan, G. X. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J. Mol. Neurosci. 2016, 59, 90–98.
Peng, Y.; Zhao, J. L.; Peng, Z. Y.; Xu, W. F.; Yu, G. L. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 2020, 11, 317.
Sun, Q.; Liang, R.; Li, M. D.; Zhou, H. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitro via reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis. J. Pharm. Pharmacol. 2022, 74, 861–868.
Li, W.; Wang, S. S.; Shan, B. Q.; Qin, J. B.; Zhao, H. Y.; Tian, M. L.; He, H.; Cheng, X.; Zhang, X. H.; Jin, G. H. miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regen. Res. 2022, 17, 401–408.
Tao, Z.; Zhao, H. P.; Wang, R. L.; Liu, P.; Yan, F.; Zhang, C. C.; Ji, X. M.; Luo, Y. M. Neuroprotective effect of microRNA-99a against focal cerebral ischemia-reperfusion injury in mice. J. Neurol. Sci. 2015, 355, 113–119.
Kim, S. U.; Song, D.; Heo, J. H.; Yoo, J.; Kim, B. K.; Park, J. Y.; Kim, D. Y.; Ahn, S. H.; Kim, K. J.; Han, K. H. et al. Liver fibrosis assessed with transient elastography is an independent risk factor for ischemic stroke. Atherosclerosis 2017, 260, 156–162.
Abdeldyem, S. M.; Goda, T.; Khodeir, S. A.; Saif, S. A.; Abd-Elsalam, S. Nonalcoholic fatty liver disease in patients with acute ischemic stroke is associated with more severe stroke and worse outcome. J. Clin. Lipidol. 2017, 11, 915–919.
Zhang, X. T.; Qi, X. S.; Yoshida, E. M.; Méndez-Sánchez, N.; Hou, F. F.; Deng, H.; Wang, X. X.; Qiu, J.; He, C.; Wang, S. et al. Ischemic stroke in liver cirrhosis: Epidemiology, risk factors, and in-hospital outcomes. Eur. J. Gastroen. Hepatol. 2018, 30, 233–240.