Journal Home > Volume 16 , Issue 5

A visual and tactile multisensory integrated system is essential for human walking due to the demand for real-time interactions between perception and action. Here, a piezoresistor and MoS2 field effect transistor are combined to construct an artificial integration nervous system to simulate perception and synaptic plasticity. The key characteristics of synaptic plasticity are successfully demonstrated by individual pressure signals, individual optical signals, and the synergy of optical and pressure signals, which are based on the electron trapping–detrapping mechanism at the MoS2/SiO2 interface. We demonstrate that perception under synergy is stronger than perception under optical or pressure signal alone, which is similar to a biological system. Moreover, various distinguishable motion scenarios (combination of the following conditions: external lighting environment of day or night, flat or rough road, and movement state of walking or running) are simulated and verified by adjusting the amplitude and frequency of the optical and pressure signals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Simulating tactile and visual multisensory behaviour in humans based on an MoS2 field effect transistor

Show Author's information Jie You1Liming Wang1( )Yichi Zhang1( )Dongdong Lin2Bo Wang1Zhao Han1Ningning Zhang1Tian Miao1Maliang Liu1Zuimin Jiang3Hui Guo1Yimeng Zhang1Jincheng Zhang1Huiyong Hu1( )
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory School of Microelectronics, Xidian University, Xi’an 710071, China
Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
Department of Physics, Fudan University, Shanghai 200433, China

Abstract

A visual and tactile multisensory integrated system is essential for human walking due to the demand for real-time interactions between perception and action. Here, a piezoresistor and MoS2 field effect transistor are combined to construct an artificial integration nervous system to simulate perception and synaptic plasticity. The key characteristics of synaptic plasticity are successfully demonstrated by individual pressure signals, individual optical signals, and the synergy of optical and pressure signals, which are based on the electron trapping–detrapping mechanism at the MoS2/SiO2 interface. We demonstrate that perception under synergy is stronger than perception under optical or pressure signal alone, which is similar to a biological system. Moreover, various distinguishable motion scenarios (combination of the following conditions: external lighting environment of day or night, flat or rough road, and movement state of walking or running) are simulated and verified by adjusting the amplitude and frequency of the optical and pressure signals.

Keywords: visual, multisensory system, motion scenarios, tactile

References(34)

[1]

Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B. et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2021, 15, 1497–1508.

[2]

Liu, Y. Q.; Yang, W. Y.; Yan, Y. J.; Wu, X. M.; Wang, X. M.; Zhou, Y. L.; Hu, Y. Y.; Chen, H. P.; Guo, T. L. Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy 2020, 75, 104930.

[3]

Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Guo, X. E.; Dong, B. W.; Lee, J.; Lee, C. Artificial intelligence of toilet (AI-toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 2021, 90, 106517.

[4]

Pan, X.; Jin, T. Y.; Gao, J.; Han, C.; Shi, Y. M.; Chen, W. Stimuli-enabled artificial synapses for neuromorphic perception: Progress and perspectives. Small 2020, 16, 2001504.

[5]

Jeong, B.; Gkoupidenis, P.; Asadi, K. Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 2021, 33, 2104034.

[6]

Huang, F.; Fang, F. E.; Zheng, Y.; You, Q.; Li, H. N.; Fang, S. F.; Cong, X. N.; Jiang, K.; Wang, Y.; Han, C. et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano. Res. 2023, 16, 1304–1312.

[7]

Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.

[8]

Park, S. J.; Kwon, O. S.; Lee, S. H.; Song, H. S.; Park, T. H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 2012, 12, 5082–5090.

[9]

Ahn, S. R.; An, J. H.; Jang, I. H.; Na, W.; Yang, H.; Cho, K. H.; Lee, S. H.; Song, H. S.; Jang, J.; Park, T. H. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosens. Bioelectron. 2018, 117, 628–636.

[10]

Wei, Y. H.; Qiao, Y. C.; Jiang, G. Y.; Wang, Y. F.; Wang, F. W.; Li, M. R.; Zhao, Y. F.; Tian, Y.; Gou, G. Y.; Tan, S. Y. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 2019, 13, 8639–8647.

[11]

Roy, C.; Dalla Bella, S.; Pla, S.; Lagarde, J. Multisensory integration and behavioral stability. Psychol. Res. 2021, 85, 879–886.

[12]

Sullivan, S. E.; Al Ariss, A. Making sense of different perspectives on career transitions: A review and agenda for future research. Hum. Resour. Manage. Rev. 2021, 31, 100727.

[13]

Wu, X. M.; Li, E. L.; Liu, Y. Q.; Lin, W. K.; Yu, R. J.; Chen, G. X.; Hu, Y. Y.; Chen, H. P.; Guo, T. L. Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 2021, 85, 106000.

[14]

Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

[15]

Espinosa, J. S.; Stryker, M. P. Development and plasticity of the primary visual cortex. Neuron 2012, 75, 230–249.

[16]

Petersen, C. C. H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 2019, 20, 533–546.

[17]

Jiang, J.; Guo, J. J.; Wan, X.; Yang, Y.; Xie, H. P.; Niu, D. M.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 2017, 13, 1700933.

[18]

Wang, B. L.; Wang, X. W.; Wang, E. Z.; Li, C. Y.; Peng, R. X.; Wu, Y. H.; Xin, Z. Q.; Sun, Y. F.; Guo, J.; Fan, S. S. et al. Monolayer MoS2 synaptic transistors for high-temperature neuromorphic applications. Nano Lett. 2021, 21, 10400–10408.

[19]

Cheng, Y. C.; Li, H. J. W.; Liu, B.; Jiang, L. Y.; Liu, M.; Huang, H.; Yang, J. L.; He, J.; Jiang, J. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 2020, 16, 2005217.

[20]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[21]

Huang, H. F.; Xu, W. S.; Chen, T. X.; Chang, R. J.; Sheng, Y. W.; Zhang, Q. Y.; Hou, L. L.; Warner, J. H. High-performance two-dimensional Schottky diodes utilizing chemical vapour deposition-grown graphene–MoS2 heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 37258–37266.

[22]

Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.

[23]

Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Kim, S. J. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. J. Alloys Compd. 2019, 771, 803–809.

[24]

Arnold, A. J.; Razavieh, A.; Nasr, J. R.; Schulman, D. S.; Eichfeld, C. M.; Das, S. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 2017, 11, 3110–3118.

[25]

Li, N.; He, C. L.; Wang, Q. Q.; Tang, J. S.; Zhang, Q. T.; Shen, C.; Tang, J.; Huang, H. Y.; Wang, S. P.; Li, J. W. et al. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 2022, 15, 5418–5424.

[26]

Kim, S. G.; Kim, S. H.; Park, J.; Kim, G. S.; Park, J. H.; Saraswat, K. C.; Kim, J.; Yu, H. Y. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano 2019, 13, 10294–10300.

[27]

Islam, M. M.; Dev, D.; Krishnaprasad, A.; Tetard, L.; Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 2020, 10, 21870.

[28]

Lee, E.; Kim, J.; Bhoyate, S.; Cho, K.; Choi, W. Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chem. Mater. 2020, 32, 10447–10455.

[29]

Lee, Y. R.; Trung, T. Q.; Hwang, B. U.; Lee, N. E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 2020, 11, 2753.

[30]

Yang, Q.; Yang, H. H.; Lv, D. X.; Yu, R. J.; Li, E. L.; He, L. H.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681.

[31]

Ahmed, T.; Kuriakose, S.; Abbas, S.; Spencer, M. J. S.; Rahman, A.; Tahir, M.; Lu, Y. R.; Sonar, P.; Bansal, V.; Bhaskaran, M. et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 2019, 29, 1901991.

[32]

Yu, F.; Cai, J. C.; Zhu, L. Q.; Sheikhi, M.; Zeng, Y. H.; Guo, W.; Ren, Z. Y.; Xiao, H.; Ye, J. C.; Lin, C. H. et al. Artificial tactile perceptual neuron with nociceptive and pressure decoding abilities. ACS Appl. Mater. Interfaces 2020, 12, 26258–26266.

[33]

Bhatnagar, P.; Hong, J.; Patel, M.; Kim, J. Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 2022, 91, 106676.

[34]

Xu, Y. C.; Liu, W. R.; Huang, Y. L.; Jin, C. X.; Zhou, B. S.; Sun, J.; Yang, J. L. Recent advances in flexible organic synaptic transistors. Adv. Electron. Mater. 2021, 7, 2100336.

File
12274_2023_5467_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 October 2022
Revised: 28 December 2022
Accepted: 03 January 2023
Published: 06 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFB2204400) and the Natural Science Basic Research Program of Shaanxi (No. 2022JQ-650). Figure 1 was partly generated using Servier Medical Art (http://www.servier.com), provided by Servier, licenced under a Creative Commons Attribution 3.0 unported licence.

Return