Journal Home > Volume 16 , Issue 5

With the increasing concern of energy crisis and global warming, the whole globe is in an urgent need to develop clean energy that comes from renewable sources and does not harm the environment to fulfill the carbon neutralization and green earth commitments. Water is the most abundant substance on earth and has been historically used as the major energy carriers in watermill, water wheel, and hydroelectricity. Moisture electricity generation is another emerging technology that can convert low-grade energy in the widely-accessible moisture to electricity simply by the integration of moisture, electrodes, and deliberately-designed hygroscopic films. Recent research on moisture electricity generators (MEGs) led to the creation of a series of self-powered sensors and in some occasions they have replaced conventional batteries to power miniaturized devices. In this review, the basic mechanisms of MEGs are firstly clarified, and three categories of them, i.e., gradient structure, homogeneous structure, and heterogeneous structure depending on the structure of hygroscopic films, are then introduced. Furthermore, recent advances in the fabrication, characteristics, and performance of MEGs are summarized, and MEGs with continuous or transient output that could be applied in self-powered sensors and power sources are discussed. Finally, some remaining challenges and our perspectives on MEGs are highlighted.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Moisture electricity generation: Mechanisms, structures, and applications

Show Author's information Quanmao Wei1Wenna Ge1Zichao Yuan1Shixu Wang1Chenguang Lu1Shile Feng1Lei Zhao1( )Yahua Liu1,2( )
Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

With the increasing concern of energy crisis and global warming, the whole globe is in an urgent need to develop clean energy that comes from renewable sources and does not harm the environment to fulfill the carbon neutralization and green earth commitments. Water is the most abundant substance on earth and has been historically used as the major energy carriers in watermill, water wheel, and hydroelectricity. Moisture electricity generation is another emerging technology that can convert low-grade energy in the widely-accessible moisture to electricity simply by the integration of moisture, electrodes, and deliberately-designed hygroscopic films. Recent research on moisture electricity generators (MEGs) led to the creation of a series of self-powered sensors and in some occasions they have replaced conventional batteries to power miniaturized devices. In this review, the basic mechanisms of MEGs are firstly clarified, and three categories of them, i.e., gradient structure, homogeneous structure, and heterogeneous structure depending on the structure of hygroscopic films, are then introduced. Furthermore, recent advances in the fabrication, characteristics, and performance of MEGs are summarized, and MEGs with continuous or transient output that could be applied in self-powered sensors and power sources are discussed. Finally, some remaining challenges and our perspectives on MEGs are highlighted.

Keywords: moisture, structures, nanogenerators, hygroelectricity, hygroscopic film

References(107)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[3]

Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sust. Energy Rev. 2017, 69, 1170–1181.

[4]

Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sust. Energy Rev. 2014, 39, 748–764.

[5]

Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633.

[6]

LeBlanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energy Rev. 2014, 32, 313–327.

[7]

Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745.

[8]

Yang, S. E.; Kim, F.; Ejaz, F.; Lee, G. S.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S. J.; Ahn, S. et al. Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy 2021, 81, 105638.

[9]

Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160.

[10]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[11]

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

[12]

Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227.

[13]

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

[14]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[15]

Kozma, E.; Catellani, M. Perylene diimides based materials for organic solar cells. Dyes Pigment. 2013, 98, 160–179.

[16]

Zhou, H. X.; Yang, L. Q.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 2012, 45, 607–632.

[17]

Xia, P.; Wu, M. L.; Zhang, S. X.; Hu, J.; Chen, L.; Bu, T. L.; Yi, J. P.; Wu, D.; Xia, J. L. High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Org. Electron. 2019, 73, 205–211.

[18]

Paish, O. Small hydro power: Technology and current status. Renew. Sust. Energy Rev. 2002, 6, 537–556.

[19]

Han, Y. Y.; Zhang, Z. P.; Qu, L. T. Power generation from graphene–water interactions. FlatChem 2019, 14, 100090.

[20]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[21]

Stephens, G. L.; Li, J. L.; Wild, M.; Clayson, C. A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P. W. Jr.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696.

[22]

Dong, J. N.; Fan, F. R.; Tian, Z. Q. Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale 2021, 13, 17290–17309.

[23]

Lyu, Q. Q.; Peng, B. L.; Xie, Z. J.; Du, S.; Zhang, L. B.; Zhu, J. T. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381.

[24]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[25]

Xu, T.; Ding, X. T.; Huang, Y. X.; Shao, C. X.; Song, L.; Gao, X.; Zhang, Z. P.; Qu, L. T. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978.

[26]

Wang, H. Y.; He, T. C.; Hao, X. Z.; Huang, Y. X.; Yao, H. Z.; Liu, F.; Cheng, H. H.; Qu, L. T. Moisture adsorption–desorption full cycle power generation. Nat. Commun. 2022, 13, 2524.

[27]

Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

[28]

Wang, H. Y.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Wang, D. B.; Li, C.; Qu, L. T. Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 2020, 67, 104238.

[29]

He, W. Y.; Wang, H. Y.; Huang, Y. X.; He, T. C.; Chi, F. Y.; Cheng, H. H.; Liu, D.; Dai, L. M.; Qu, L. T. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 2022, 95, 107017.

[30]

Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329–335.

[31]

Shi, X.; Luo, J. J.; Luo, J. Z.; Li, X. J.; Han, K.; Li, D.; Cao, X.; Wang, Z. L. Flexible wood-based triboelectric self-powered smart home system. ACS Nano 2022, 16, 3341–3350.

[32]

Xu, R. D.; Qu, L. J.; Tian, M. W. Touch-sensing fabric encapsulated with hydrogel for human–computer interaction. Soft Matter 2021, 17, 9014–9018.

[33]

Li, M. J.; Zong, L.; Yang, W. Q.; Li, X. K.; You, J.; Wu, X. C.; Li, Z. H.; Li, C. X. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

[34]

van der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.

[35]

Shao, C. X.; Gao, J.; Xu, T.; Ji, B. X.; Xiao, Y. K.; Gao, C.; Zhao, Y.; Qu, L. T. Wearable fiberform hygroelectric generator. Nano Energy 2018, 53, 698–705.

[36]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

[37]

Sun, Z. Y.; Feng, L. L.; Xiong, C. D.; He, X. Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 2021, 9, 7085–7093.

[38]

Sun, Z. Y.; Feng, L. L.; Wen, X.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 2021, 8, 2303–2309.

[39]

Zhang, J. C.; Hou, Y.; Lei, L. R.; Hu, S. Q. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J. Membr. Sci. 2022, 662, 120962.

[40]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Yu, J. Y.; Qin, X. H. Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 2022, 15, 4584–4591.

[41]

Lei, D. D.; Zhang, Q. X.; Liu, N. S.; Su, T. Y.; Wang, L. X.; Ren, Z. Q.; Zhang, Z.; Su, J.; Gao, Y. H. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 2022, 32, 2107330.

[42]

Zhang, Y.; Yang, T. T.; Shang, K. D.; Guo, F. M.; Shang, Y. Y.; Chang, S. L.; Cui, L. C.; Lu, X. L.; Jiang, Z. B.; Zhou, J. et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 2022, 13, 3484.

[43]

Zhang, K.; Cai, L.; Nilghaz, A.; Chen, G. X.; Wan, X. F.; Tian, J. F. Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell. Nano Energy 2022, 98, 107288.

[44]

Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

[45]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

[46]

Chen, N.; Liu, Q. W.; Liu, C.; Zhang, G. F.; Jing, J.; Shao, C. X.; Han, Y. Y.; Qu, L. T. MEG actualized by high-valent metal carrier transport. Nano Energy 2019, 65, 104047.

[47]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856.

[48]

Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss). Ann. Phys. 1853, 165, 353–377.

[49]

Stern, H. O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516.

[50]

Bouzigues, C. I.; Tabeling, P.; Bocquet, L. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 2008, 101, 114503.

[51]

Smith, A. M.; Lee, A. A.; Perkin, S. The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163.

[52]

Shen, D. Z.; Duley, W. W.; Peng, P.; Xiao, M.; Feng, J. Y.; Liu, L.; Zou, G. S.; Zhou, Y. N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722.

[53]

Hon, K. C.; Zhao, C. L.; Yang, C.; Chay Low, S. A method of producing electrokinetic power through forward osmosis. Appl. Phys. Lett. 2012, 101, 143902.

[54]

Chang, C. C.; Yang, R. J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid. Nanofluid. 2010, 9, 225–241.

[55]

Olthuis, W.; Schippers, B.; Eijkel, J.; van den Berg, A. Energy from streaming current and potential. Sens. Actuators B: Chem. 2005, 111–112, 385–389.

[56]

Xuan, X. C.; Li, D. Q. Analysis of electrokinetic flow in microfluidic networks. J. Micromech. Microeng. 2004, 14, 290–298.

[57]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[58]

Zhao, X. Y.; Shen, D. Z.; Duley, W. W.; Tan, C. W.; Zhou, Y. N. Water-enabled electricity generation: A perspective. Adv. Energy Sustainability Res. 2022, 3, 2100196.

[59]

Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

[60]

Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

[61]

Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

[62]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[63]

Ducati, T. R. D.; Simões, L. H.; Galembeck, F. Charge partitioning at gas–solid interfaces: Humidity causes electricity buildup on metals. Langmuir 2010, 26, 13763–13766.

[64]

Lax, J. Y.; Price, C.; Saaroni, H. On the spontaneous build-up of voltage between dissimilar metals under high relative humidity conditions. Sci. Rep. 2020, 10, 7642.

[65]

Eun, J.; Jeon, S. Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 2022, 92, 106772.

[66]

Tan, J.; Fang, S. M.; Zhang, Z. H.; Yin, J.; Li, L. X.; Wang, X.; Guo, W. L. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.

[67]

Tung, R. T. Recent advances in Schottky barrier concepts. Mater. Sci. Eng.: R: Rep. 2001, 35, 1–138.

[68]

Brillson, L. J.; Lu, Y. C. ZnO schottky barriers and ohmic contacts. J. Appl. Phys. 2011, 109, 121301.

[69]

Dunitz, J. D. Weak intermolecular interactions in solids and liquids. Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A. Mol. Cryst. Liq. Cryst. 1996, 279, 209–218.

[70]

Długołęcki, P.; Anet, B.; Metz, S. J.; Nijmeijer, K.; Wessling, M. Transport limitations in ion exchange membranes at low salt concentrations. J. Membr. Sci. 2010, 346, 163–171.

[71]

Zhu, R. B.; Zhu, Y. Z.; Chen, F. D.; Patterson, R.; Zhou, Y. Z.; Wan, T.; Hu, L.; Wu, T.; Joshi, R.; Li, M. Y. et al. Boosting moisture induced electricity generation from graphene oxide through engineering oxygen-based functional groups. Nano Energy 2022, 94, 106942.

[72]

Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

[73]

Guldi, D.; Thomson, J.; Eagling, R.; Darby, C. Chem Soc Rev—Growing stronger. Chem. Soc. Rev. 2011, 40, 15–18.

[74]

Lu, W. H.; Ding, T. P.; Wang, X. Q.; Zhang, C.; Li, T. T.; Zeng, K. Y.; Ho, G. W. Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 2022, 104, 107892.

[75]

Bai, J. X.; Huang, Y. X.; Wang, H. Y.; Guang, T. L.; Liao, Q. H.; Cheng, H. H.; Deng, S. H.; Li, Q. K.; Shuai, Z. G.; Qu, L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, 2103897.

[76]

Cai, T. L.; Lan, L. Y.; Peng, B.; Zhang, C.; Dai, S. F.; Zhang, C.; Ping, J. F.; Ying, Y. B. Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 2022, 22, 6476–6483.

[77]

Yang, W. Q.; Li, X. K.; Han, X.; Zhang, W. H.; Wang, Z. B.; Ma, X. M.; Li, M. J.; Li, C. X. Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 2020, 71, 104610.

[78]

Zheng, S.; Tang, J. Y.; Lv, D.; Wang, M.; Yang, X.; Hou, C. S.; Yi, B.; Lu, G.; Hao, R. R.; Wang, M. Z. et al. Continuous energy harvesting from ubiquitous humidity gradients using liquid-infused nanofluidics. Adv. Mater. 2022, 34, 2106410.

[79]

Dinh Trung, V.; Chen, S.; Xia, H.; Natsuki, T.; Ni, Q. Q. A moisture-induced electric generator with high output voltage for self-powered wearable electronics. ChemNanoMat 2022, 8, e202200395.

[80]

Xue, J. L.; Zhao, F.; Hu, C. G.; Zhao, Y.; Luo, H. X.; Dai, L. M.; Qu, L. T. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 2016, 26, 8784–8792.

[81]

Zhao, Q. N.; Duan, Z. H.; Wu, Y. W.; Liu, B. H.; Yuan, Z.; Jiang, Y. D.; Tai, H. L. Facile primary battery-based humidity sensor for multifunctional application. Sens. Actuators B: Chem. 2022, 370, 132369.

[82]

Cheng, H. H.; Huang, Y. X.; Qu, L. T.; Cheng, Q. L.; Shi, G. Q.; Jiang, L. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 2018, 45, 37–43.

[83]

Chen, S.; Xia, H.; Ni, Q. Q. A wearable sustainable moisture-induced electricity generator based on rGO/GO/rGO sandwich-like structural film. Adv. Electron. Mater. 2021, 7, 2100222.

[84]

Zhao, Q. N.; Jiang, Y. D.; Duan, Z. H.; Yuan, Z.; Zha, J. J.; Wu, Z. K.; Huang, Q.; Zhou, Z.; Li, H.; He, F. et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588.

[85]

Shen, D. Z.; Xiao, Y.; Zou, G. S.; Liu, L.; Wu, A. P.; Xiao, M.; Feng, J. Y.; Hui, Z.; Duley, W. W.; Zhou, Y. N. Exhaling-driven hydroelectric nanogenerators for stand-alone nonmechanical breath analyzing. Adv. Mater. Technol. 2019, 5, 1900819.

[86]

Mandal, S.; Roy, S.; Mandal, A.; Ghoshal, T.; Das, G.; Singh, A.; Goswami, D. K. Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl. Electron. Mater. 2020, 2, 780–789.

[87]

Chen, S.; Xia, H.; Ni, Q. Q. A sustainable, continuously expandable, wearable breath moisture-induced electricity generator. Carbon 2022, 194, 104–113.

[88]

Yang, S.; Tao, X. M.; Chen, W.; Mao, J. F.; Luo, H.; Lin, S. P.; Zhang, L. S.; Hao, J. H. Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 2022, 34, 2200693.

[89]

Zhao, F.; Wang, L. X.; Zhao, Y.; Qu, L. T.; Dai, L. M. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 2017, 29, 1604972.

[90]

Huang, Y. X.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 38170–38175.

[91]

Nie, X. W.; Ji, B. X.; Chen, N.; Liang, Y.; Han, Q.; Qu, L. T. Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy 2018, 46, 297–304.

[92]

Li, L. H.; Chen, Z. G.; Hao, M. M.; Wang, S. Q.; Sun, F. Q.; Zhao, Z. G.; Zhang, T. Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 2019, 19, 5544–5552.

[93]

Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 2019, 11, 26970–26975.

[94]

Lee, S.; Eun, J.; Jeon, S. Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 2020, 68, 104364.

[95]

Shen, D. Z.; Xiao, M.; Zou, G. S.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925.

[96]

Ren, G. P.; Wang, Z.; Zhang, B. T.; Liu, X.; Ye, J.; Hu, Q. C.; Zhou, S. G. A facile and sustainable hygroelectric generator using whole-cell Geobacter sulfurreducens. Nano Energy 2021, 89, 106361.

[97]

Li, Q. J.; Zhou, M.; Yang, Q. F.; Yang, M. Y.; Wu, Q.; Zhang, Z. X.; Yu, J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 2018, 6, 10639–10643.

[98]

Gao, X.; Xu, T.; Shao, C. X.; Han, Y. Y.; Lu, B.; Zhang, Z. P.; Qu, L. T. Electric power generation using paper materials. J. Mater. Chem. A 2019, 7, 20574–20578.

[99]

Ren, G. P.; Hu, Q. C.; Ye, J.; Liu, X.; Zhou, S. G.; He, Z. Hydrovoltaic effect of microbial films enables highly efficient and sustainable electricity generation from ambient humidity. Chem. Eng. J. 2022, 441, 135921.

[100]

Liu, J. Y.; Huang, L. Y.; He, W. J.; Cai, X. X.; Wang, Y.; Zhou, L. H.; Yuan, Y. Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils. Nano Energy 2022, 102, 107709.

[101]

Yang, W. Q.; Lv, L. L.; Li, X. K.; Han, X.; Li, M. J.; Li, C. X. Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 2020, 14, 10600–10607.

[102]

Zhang, R.; Qu, M. J.; Wang, H.; Fan, M. S.; Chen, Q. S.; Tang, P.; Bin, Y. Z. Moist-electric films based on asymmetric distribution of sodium alginate oxygen-containing functional groups. React. Funct. Polym. 2022, 181, 105421.

[103]

Li, P. D.; Su, N.; Wang, Z. Y.; Qiu, J. S. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 2021, 15, 16811–16818.

[104]

Wu, Y. F.; Shao, B. B.; Song, Z. H.; Li, Y. J.; Zou, Y. T.; Chen, X.; Di, J. T.; Song, T.; Wang, Y. S.; Sun, B. Q. A hygroscopic janus heterojunction for continuous moisture-triggered electricity generators. ACS Appl. Mater. Interfaces 2022, 14, 19569–19578.

[105]

Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

[106]

Hu, Q. C.; Ren, G. P.; Ye, J.; Zhang, B. T.; Rensing, C.; Zhou, S. G. Hygroelectric-photovoltaic coupling generator using self-assembled bio-nano hybrids. Chem. Eng. J. 2023, 452, 139169.

[107]

Bai, J. X.; Hu, Y. J.; Guang, T. L.; Zhu, K. X.; Wang, H. Y.; Cheng, H. H.; Liu, F.; Qu, L. T. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy Environ. Sci. 2022, 15, 3086–3096.

File
12274_2023_5465_MOESM1_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 October 2022
Revised: 09 December 2022
Accepted: 03 January 2023
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB4602401), the National Natural Science Foundation of China (Nos. 52075071 and 52105174), Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (No. KF20200002), and Key Laboratory of Icing and Anti/De-icing of CARDC (No. IADL 20210405).

Return