Journal Home > Volume 16 , Issue 5

Conventional glassy carbon electrodes (GCE) cannot meet the requirements of future electrodes for wider use due to low conductivity, high cost, non-portability, and lack of flexibility. Therefore, cost-effective and wearable electrode enabling rapid and versatile molecule detection is becoming important, especially with the ever-increasing demand for health monitoring and point-of-care diagnosis. Graphene is considered as an ideal electrode due to its excellent physicochemical properties. Here, we prepare graphene film with ultra-high conductivity and customize the 3-electrode system via a facile and highly controllable laser engraving approach. Benefiting from the ultra-high conductivity (5.65 × 105 S·m−1), the 3-electrode system can be used as multifunctional electrode for direct detection of dopamine (DA) and enzyme-based detection of glucose without further metal deposition. The dynamic ranges from 1–200 μM to 0.5–8.0 mM were observed for DA and glucose, respectively, with a limit of detection (LOD) of 0.6 μM and 0.41 mM. Overall, the excellent target detection capability caused by the ultra-high conductivity and ease modification of graphene films, together with their superb mechanical properties and ease of mass-produced, provides clear potential not only for replacing GCE for various electrochemical studies but also for the development of portable and high-performance electrochemical wearable medical devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Scalable fabrication of graphene-assembled multifunctional electrode with efficient electrochemical detection of dopamine and glucose

Show Author's information Xiaodong Ji1Xin Zhao2( )Zixin Zhang1Yunfa Si1Wei Qian2Huaqiang Fu1Zibo Chen1Zhe Wang3Huihui Jin4( )Zhugen Yang5Daping He1,2( )
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
School of Water, Energy and Environment, Cranfield University, Milton Keynes, MK43 0AL, UK

Abstract

Conventional glassy carbon electrodes (GCE) cannot meet the requirements of future electrodes for wider use due to low conductivity, high cost, non-portability, and lack of flexibility. Therefore, cost-effective and wearable electrode enabling rapid and versatile molecule detection is becoming important, especially with the ever-increasing demand for health monitoring and point-of-care diagnosis. Graphene is considered as an ideal electrode due to its excellent physicochemical properties. Here, we prepare graphene film with ultra-high conductivity and customize the 3-electrode system via a facile and highly controllable laser engraving approach. Benefiting from the ultra-high conductivity (5.65 × 105 S·m−1), the 3-electrode system can be used as multifunctional electrode for direct detection of dopamine (DA) and enzyme-based detection of glucose without further metal deposition. The dynamic ranges from 1–200 μM to 0.5–8.0 mM were observed for DA and glucose, respectively, with a limit of detection (LOD) of 0.6 μM and 0.41 mM. Overall, the excellent target detection capability caused by the ultra-high conductivity and ease modification of graphene films, together with their superb mechanical properties and ease of mass-produced, provides clear potential not only for replacing GCE for various electrochemical studies but also for the development of portable and high-performance electrochemical wearable medical devices.

Keywords: graphene film, ultra-high conductivity, multifunctional electrode, point-of-care diagnosis, wearable medical devices

References(40)

[1]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[2]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 134, e202213318.

[3]

Chen, R.; Shu, T.; Zhao, F. L.; Li, Y. F.; Yang, X. T.; Li, J. W.; Zhang, D. L.; Gan, L. Y.; Yao, K. X.; Yuan, Q. PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells. Nano Res. 2022, 15, 9010–9018.

[4]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2022, e202215136.

[5]
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ange.202212653.
[6]

Shen, L.; Liang, Z.; Chen, Z. Y.; Wu, C.; Hu, X. F.; Zhang, J. Y.; Jiang, Q.; Wang, Y. B. Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Res. 2022, 15, 6490–6499.

[7]
Long, B. J.; Cao, P. Y.; Zhao, Y. M.; Fu, Q. Q.; Mo, Y.; Zhai, Y. M.; Liu, J. J.; Lyu, X. Y.; Li, T.; Guo, X. F. et al. Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Res., in press, https://doi.org/10.1007/s12274-022-4801-9.
[8]

Zhou, Q.; Li, G. H.; Zhang, Y. J.; Zhu, M.; Wan, Y. K.; Shen, Y. F. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π–π stacked graphene oxide/thionine assembly. Anal. Chem. 2016, 88, 9830–9836.

[9]

Long, B. J.; Zhao, Y. M.; Cao, P. Y.; Wei, W.; Mo, Y.; Liu, J. J.; Sun, C. J.; Guo, X. F.; Shan, C. S.; Zeng, M. H. Single-atom Pt boosting electrochemical nonenzymatic glucose sensing on Ni(OH)2/N-doped graphene. Anal. Chem. 2022, 94, 1919–1924.

[10]

Yu, H. X.; Chen, Z. M.; Liu, Y. Z.; Alkhamis, O.; Song, Z. P.; Xiao, Y. Fabrication of aptamer-modified paper electrochemical devices for on-site biosensing. Angew. Chem., Int. Ed. 2021, 60, 2993–3000.

[11]

Mahato, K.; Wang, J. Electrochemical sensors: From the bench to the skin. Sens. Actuat. B Chem. 2021, 344, 130178.

[12]

Dungchai, W.; Chailapakul, O.; Henry, C. S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826.

[13]

Wang, C.; Wu, R.; Ling, H.; Zhao, Z. L.; Han, W. J.; Shi, X. W.; Payne, G. F.; Wang, X. H. Toward scalable fabrication of electrochemical paper sensor without surface functionalization. npj Flex. Electron. 2022, 6, 12.

[14]

Metters, J. P.; Kadara, R. O.; Banks, C. E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076.

[15]

Duan, W. C.; Del Campo, F. J.; Gich, M.; Fernández-Sánchez, C. In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sens. Actuat. B Chem. 2022, 369, 132304.

[16]

Valentine, C. J.; Takagishi, K.; Umezu, S.; Daly, R.; De Volder, M. Paper-based electrochemical sensors using paper as a scaffold to create porous carbon nanotube electrodes. ACS Appl. Mater. Interfaces 2020, 12, 30680–30685.

[17]

Liu, N.; Chortos, A.; Lei, T.; Jin, L. H.; Kim, T. R.; Bae, W. G.; Zhu, C. X.; Wang, S. H.; Pfattner, R.; Chen, X. Y. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 2017, 3, e1700159.

[18]

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

[19]

Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

[20]

Zheng, C. L.; Zhang, J. L.; Zhang, Q.; You, B.; Chen, G. L. Three dimensional Ni foam-supported graphene oxide for binder-free pseudocapacitor. Electrochim. Acta 2015, 152, 216–221.

[21]

De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 2019, 13, 8926–8935.

[22]

Liu, F. N.; Li, P.; An, H.; Peng, P.; McLean, B.; Ding, F. Achievements and challenges of graphene chemical vapor deposition growth. Adv. Funct. Mater. 2022, 32, 2203191.

[23]

Orzari, L. O.; De Freitas, R. C.; De Araujo Andreotti, I. A.; Gatti, A.; Janegitz, B. C. A novel disposable self-adhesive inked paper device for electrochemical sensing of dopamine and serotonin neurotransmitters and biosensing of glucose. Biosens. Bioelectron. 2019, 138, 111310.

[24]

He, W. Z.; Liu, R. T.; Zhou, P.; Liu, Q. Y.; Cui, T. H. Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens. Bioelectron. 2020, 167, 112473.

[25]

Zhao, X.; He, D.; You, B. Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes. Mater. Today Sustain. 2022, 17, 100096.

[26]

Lemarchand, J.; Bridonneau, N.; Battaglini, N.; Carn, F.; Mattana, G.; Piro, B.; Zrig, S.; Noël, V. Challenges, prospects, and emerging applications of inkjet-printed electronics: A chemist’s point of view. Angew. Chem., Int. Ed. 2022, 61, e202200166.

[27]

Chakraborty, B.; Saha, R.; Chattopadhyay, S.; De, D.; Das, R. D.; Mukhopadhyay, M. K.; Palit, M.; RoyChaudhuri, C. Impact of surface defects in electron beam evaporated ZnO thin films on FET biosensing characteristics towards reliable PSA detection. Appl. Surf. Sci. 2021, 537, 147895.

[28]

Li, P.; Yang, M. C.; Liu, Y. J.; Qin, H. S.; Liu, J. R.; Xu, Z.; Liu, Y. L.; Meng, F. X.; Lin, J. H.; Wang, F. et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645.

[29]

Khaliliazar, S.; Månsson, I. Ö.; Piper, A.; Ouyang, L. Q.; Réu, P.; Hamedi, M. M. Woven electroanalytical biosensor for nucleic acid amplification tests. Adv. Healthc. Mater. 2021, 10, 2100034.

[30]

Randviir, E. P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochim. Acta 2018, 286, 179–186.

[31]

Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355.

[32]

Heien, M. L. A. V.; Khan, A. S.; Ariansen, J. L.; Cheer, J. F.; Phillips, P. E. M.; Wassum, K. M.; Wightman, R. M. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. USA 2005, 102, 10023–10028.

[33]

Liu, M. L.; Chen, Q.; Lai, C. L.; Zhang, Y. Y.; Deng, J. H.; Li, H. T.; Yao, S. Z. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens. Bioelectron. 2013, 48, 75–81.

[34]

Zhuang, X. X.; Mazzoni, P.; Kang, U. J. The role of neuroplasticity in dopaminergic therapy for parkinson disease. Nat. Rev. Neurol. 2013, 9, 248–256.

[35]

Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 2016, 17, 524–532.

[36]

Pan, Z. L.; Guo, H.; Sun, L.; Liu, B. Q.; Chen, Y.; Zhang, T. T.; Wang, M. Y.; Peng, L. P.; Yang, W. A novel electrochemical platform based on COF/La2O3/MWCNTs for simultaneous detection of dopamine and uric acid. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128083.

[37]

Klein, M. O.; Battagello, D. S.; Cardoso, A. R.; Hauser, D. N.; Bittencourt, J. C.; Correa, R. G. Dopamine: Functions, signaling, and association with neurological diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59.

[38]

Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206.

[39]

Khamcharoen, W.; Siangproh, W. A multilayer microfluidic paper coupled with an electrochemical platform developed for sample separation and detection of dopamine. New J. Chem. 2021, 45, 12886–12894.

[40]

Wang, Y.; Li, Y. M.; Tang, L. H.; Lu, J.; Li, J. H. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. commun. 2009, 11, 889–892.

File
12274_2022_5459_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2022
Revised: 25 December 2022
Accepted: 29 December 2022
Published: 22 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672204 and 22102128), the Fundamental Research Funds for the Central Universities (WUT: 2021IVA66, WUT: 2022IVA172, and WUT: 2020IB005), and the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No. 520LH054).

Return