Journal Home > Volume 16 , Issue 5

The anti-tumor effect of therapeutic carbon monoxide (CO) has been considered concerning the electron transport chain on the inner mitochondrial membrane. Herein, a tumor microenvironment and photo-responsive CO nanoplatform Ca-Flav nanoparticles (NPs) were constructed through biomineralizing acryloyl-modified flavonol, which could release CO both in normoxia and hypoxia conditions upon irradiation at tumor lesion. The in vitro experiments demonstrated that the endoplasmic reticulum stress-related signal pathways could be activated through oxidative stress caused by CO mediated mitochondrial biogenesis and calcium ion turbulence induced by Ca3(PO4)2 acidolysis, resulting in mitochondrial dysfunction and cell apoptosis. In addition, the Ca-Flav NPs exhibited excellent biocompatibility and tumor inhibition effect in vivo. This work provides new insight into the potential characteristics of CO, paving a new way to engineer more efficient treatment based on CO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biomineralized CO gas-releasing nanoprodrug for endoplasmic reticulum stress mediated cancer therapy

Show Author's information Rui Gu1Wanlan Yang1Lifei Han3Chao Liu1Yatao Xu1Yunlong Liu2Weili Si1( )Wenjun Wang2Xiaochen Dong1,4( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Breast Disease Center. Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China

Abstract

The anti-tumor effect of therapeutic carbon monoxide (CO) has been considered concerning the electron transport chain on the inner mitochondrial membrane. Herein, a tumor microenvironment and photo-responsive CO nanoplatform Ca-Flav nanoparticles (NPs) were constructed through biomineralizing acryloyl-modified flavonol, which could release CO both in normoxia and hypoxia conditions upon irradiation at tumor lesion. The in vitro experiments demonstrated that the endoplasmic reticulum stress-related signal pathways could be activated through oxidative stress caused by CO mediated mitochondrial biogenesis and calcium ion turbulence induced by Ca3(PO4)2 acidolysis, resulting in mitochondrial dysfunction and cell apoptosis. In addition, the Ca-Flav NPs exhibited excellent biocompatibility and tumor inhibition effect in vivo. This work provides new insight into the potential characteristics of CO, paving a new way to engineer more efficient treatment based on CO.

Keywords: carbon monoxide, gas therapy, mitochondrial, endoplasmic reticulum

References(30)

[1]

Siracusa, R.; Schaufler, A.; Calabrese, V.; Fuller, P. M.; Otterbein, L. E. Carbon monoxide: From poison to clinical trials. Trends Pharmacol. Sci. 2021, 42, 329–339.

[2]

Peers, C.; Boyle, J. P.; Scragg, J. L.; Dallas, M. L.; Al-Owais, M. M.; Hettiarachichi, N. T.; Elies, J.; Johnson, E.; Gamper, N.; Steele, D. S. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br. J. Pharmacol. 2015, 172, 1546–1556.

[3]

Williams, S. E. J.; Wootton, P.; Mason, H. S.; Bould, J.; Iles, D. E.; Riccardi, D.; Peers, C.; Kemp, P. J. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 2004, 306, 2093–2097.

[4]

Wilkinson, W. J.; Kemp, P. J. Carbon monoxide: An emerging regulator of ion channels. J. Physiol. 2011, 589, 3055–3062.

[5]

Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743.

[6]

Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; de Costa d’Avila, J.; Rao, J.; Billiar, T. R.; Otterbein, L. E. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 2007, 21, 1099–1106.

[7]

Wu, L. Y.; Wang, R. Carbon monoxide: Endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev. 2005, 57, 585–630.

[8]

Otterbein, L. E.; Choi, A. M. K. Heme oxygenase: Colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1029–L1037.

[9]

Chakraborty, I.; Carrington, S. J.; Mascharak, P. K. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets. Acc. Chem. Res. 2014, 47, 2603–2611.

[10]

Abeyrathna, N.; Washington, K.; Bashur, C.; Liao, Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org. Biomol. Chem. 2017, 15, 8692–8699.

[11]

Jin, Z. K.; Wen, Y. Y.; Xiong, L. W.; Yang, T.; Zhao, P. H.; Tan, L. W.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. Intratumoral H2O2-triggered release of CO from a metal carbonyl-based nanomedicine for efficient CO therapy. Chem. Commun. 2017, 53, 5557–5560.

[12]

Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Photocatalyzing CO2 to CO for enhanced cancer therapy. Adv. Mater. 2017, 29, 1703822.

[13]

Wang, Y.; Zhang, J. Y.; Lv, X. Y.; Wang, L.; Zhong, Z. H.; Yang, D. P.; Si, W. L.; Zhang, T.; Dong, X. C. Mitoxantrone as photothermal agents for ultrasound/fluorescence imaging-guided chemo-phototherapy enhanced by intratumoral H2O2-Induced CO. Biomaterials 2020, 252, 120111.

[14]

Znati, M.; Bordes, C.; Forquet, V.; Lantéri, P.; Ben Jannet, H.; Bouajila, J. Synthesis, molecular properties, anti-inflammatory and anticancer activities of novel 3-hydroxyflavone derivatives. Bioorg. Chem. 2019, 89, 103009.

[15]

Lazarus, L. S.; Esquer, H. J.; Benninghoff, A. D.; Berreau, L. M. Sense and release: A thiol-responsive flavonol-based photonically driven carbon monoxide-releasing molecule that operates via a multiple-input AND logic gate. J. Am. Chem. Soc. 2017, 139, 9435–9438.

[16]

Anderson, S. N.; Richards, J. M.; Esquer, H. J.; Benninghoff, A. D.; Arif, A. M.; Berreau, L. M. A structurally-tunable 3-hydroxyflavone motif for visible light-induced carbon monoxide-releasing molecules (CORMs). ChemistryOpen 2015, 4, 590–594.

[17]

Chong, W. C.; Shastri, M. D.; Eri, R. Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. IJMS 2017, 18, 771.

[18]

Filadi, R.; Theurey, P.; Pizzo, P. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 2017, 62, 1–15.

[19]

Hernández-Alvarez, M. I.; Sebastián, D.; Vives, S.; Ivanova, S.; Bartoccioni, P.; Kakimoto, P.; Plana, N.; Veiga, S. R.; Hernández, V.; Vasconcelos, N. et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell 2019, 177, 881–895.e17.

[20]

Murphy, M. P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab. 2013, 18, 145–146.

[21]

Szakács, Z.; Bojtár, M.; Drahos, L.; Hessz, D.; Kállay, M.; Vidóczy, T.; Bitter, I.; Kubinyi, M. The kinetics and mechanism of photooxygenation of 4′-diethylamino-3-hydroxyflavone. Photochem. Photobiol. Sci. 2016, 15, 219–227.

[22]

Michel, B. W.; Lippert, A. R.; Chang, C. J. A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J. Am. Chem. Soc. 2012, 134, 15668–15671.

[23]

Elisei, F.; Lima, J. C.; Ortica, F.; Aloisi, G. G.; Costa, M.; Leitão, E.; Abreu, I.; Dias, A.; Bonifácio, V.; Medeiros, J. et al. Photophysical properties of hydroxy-substituted flavothiones. J. Phys. Chem. A 2000, 104, 6095–6102.

[24]

Maçanita, A. L.; Elisei, F.; Aloisi, G. G.; Ortica, F.; Bonifácio, V.; Dias, A.; Leitão, E.; Caldeira, M. J.; Maycock, C. D.; Becker, R. S. Photochemistry of flavothione and hydroxyflavothiones: Mechanisms and kinetics. Photochem. Photobiol. 2003, 77, 22–29.

[25]

Wang, L.; Xu, Y. T.; Liu, C.; Si, W. L.; Wang, W. J.; Zhang, Y. W.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Copper-doped MOF-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy. Chem. Eng. J. 2022, 438, 135567.

[26]

Zhao, H.; Wu, C. H.; Gao, D.; Chen, S. P.; Zhu, Y. D.; Sun, J.; Luo, H. R.; Yu, K.; Fan, H. S.; Zhang, X. D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano 2018, 12, 7838–7854.

[27]

Ge, W.; Xu, Y. T.; Liu, C.; Xu, W. J.; Zhang, Y. W.; Si, W. L.; Zhao, W. L.; Ou, C. J.; Dong, X. C. Structural effect of NIR-II absorbing charge transfer complexes and its application on cysteine-depletion mediated ferroptosis and phototherapy. J. Mater. Chem. B 2021, 9, 8300–8307.

[28]

Zhong, Z. H.; Liu, C.; Xu, Y. T.; Si, W. L.; Wang, W. J.; Zhong, L. P.; Zhao, Y. X.; Dong, X. C. γ-Fe2O3 loading mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/photothermal synergistic cancer therapy. Adv. Healthcare Mater. 2022, 11, 2102632.

[29]

Huang, X. Y.; Zhang, W.; Peng, Y. W.; Gao, L.; Wang, F.; Wang, L.; Wei, X. B. A multifunctional layered nickel silicate nanogenerator of synchronous oxygen self-supply and superoxide radical generation for hypoxic tumor therapy. ACS Nano 2022, 16, 974–983.

[30]

Huang, X. Y.; Zha, F. J.; Zou, J. H.; Li, Y. X.; Wang, F.; Chen, X. Y. Photoacoustic imaging-guided synergistic photothermal/radiotherapy using plasmonic Bi/Bi2O3−x nanoparticles. Adv. Funct. Mater. 2022, 32, 2113353.

File
12274_2023_5458_MOESM1_ESM.pdf (916.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 December 2022
Revised: 23 December 2022
Accepted: 23 December 2022
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21975121 and 22175089), Jiangsu Provincial key research and development plan (No. BE2021711), and Taishan scholars’ construction special fund of Shandong Province.

Return