Journal Home > Volume 16 , Issue 5

As the continuous development of the industrial revolution, nanomaterials with excellent characteristics have been widely applied in various fields, greatly increasing the probability of human exposure to nanomaterials and the concerns about the potential nanotoxicity. Existing studies have shown that the toxicity of nanomaterials may be closely related to oxidative stress, inflammatory response, phagocytosis dysfunction, DNA damage, etc. Based on our focus, nanomaterials may cross the human barrier through various channels and disrupt various cell-cell junctions, while the integrity of cellular barrier is a necessary for the normal physiological function of various organs. However, until now, there is still a lack of systematic discussion in this field. This review illustrates the importance of cell-cell junctions in maintaining various organ functions and highlights the mechanism of various nanomaterials disrupt cell-cell junctions, as well as the possible damage to various organs, such as brain, eye, lung, breast, intestine, placenta, testis, heart, liver, kidney, skin, etc. Awareness of the potential negative effects of nanomaterials will help scientists deeply understand the limitations of nanotechnology, inspiring them to develop safer and more efficient nanomaterials for future personalized nanomedicine.


menu
Abstract
Full text
Outline
About this article

Nanomaterials disrupting cell-cell junctions towards various diseases

Show Author's information Shanbin Xu1,§Xinlong Pang1,§Xinyu Zhang1Qian Lv1Meng Zhang1Jinping Wang2Nengyi Ni3Xiao Sun1( )
School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore

§ Shanbin Xu and Xinlong Pang contributed equally to this work.

Abstract

As the continuous development of the industrial revolution, nanomaterials with excellent characteristics have been widely applied in various fields, greatly increasing the probability of human exposure to nanomaterials and the concerns about the potential nanotoxicity. Existing studies have shown that the toxicity of nanomaterials may be closely related to oxidative stress, inflammatory response, phagocytosis dysfunction, DNA damage, etc. Based on our focus, nanomaterials may cross the human barrier through various channels and disrupt various cell-cell junctions, while the integrity of cellular barrier is a necessary for the normal physiological function of various organs. However, until now, there is still a lack of systematic discussion in this field. This review illustrates the importance of cell-cell junctions in maintaining various organ functions and highlights the mechanism of various nanomaterials disrupt cell-cell junctions, as well as the possible damage to various organs, such as brain, eye, lung, breast, intestine, placenta, testis, heart, liver, kidney, skin, etc. Awareness of the potential negative effects of nanomaterials will help scientists deeply understand the limitations of nanotechnology, inspiring them to develop safer and more efficient nanomaterials for future personalized nanomedicine.

Keywords: nanomaterials, nanotoxicity, cell-cell junctions, organ damage

References(181)

[1]

Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

[2]

Ni, N. Y.; Zhang, X. Y.; Ma, Y. L.; Yuan, J.; Wang, D. Q.; Ma, G. Q.; Dong, J.; Sun, X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coord. Chem. Rev. 2022, 458, 214415.

[3]

Liu, J. L.; Huang, M. Y.; Zhang, X. Y.; Hua, Z. Y.; Feng, Z. R.; Dong, Y.; Sun, T. D.; Sun, X.; Chen, C. X. Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics. Coord. Chem. Rev. 2022, 472, 214785.

[4]

Ni, N. Y.; Su, Y. Q.; Wei, Y. C.; Ma, Y. L.; Zhao, L. Z.; Sun, X. Tuning nanosiliceous framework for enhanced cancer theranostic applications. Adv. Ther. 2021, 4, 2000218.

[5]

Deng, Y.; Ediriwickrema, A.; Yang, F.; Lewis, J.; Girardi, M.; Saltzman, W. M. A sunblock based on bioadhesive nanoparticles. Nat. Mater. 2015, 14, 1278–1285.

[6]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X.; et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

[7]

Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Knežević, N. Ž.; Gadjanski, I.; Vidić, J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454.

[8]

Zheng, Y. Q.; Yuan, Y. F.; Tong, Z. W.; Yin, H.; Yin, S. M.; Guo, S. Y. Watermelon-like TiO2 nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries. Nanotechnology 2020, 31, 215407.

[9]

Ni, N. Y.; Wang, W. Y.; Sun, Y.; Sun, X.; Leong, D. T. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022, 287, 121640.

[10]

Cao, M. J.; Li, B.; Guo, M. Y.; Liu, Y.; Zhang, L. L.; Wang, Y. L.; Hu, B.; Li, J. Y.; Sutherland, D. S.; Wang, L. M. et al. In vivo percutaneous permeation of gold nanomaterials in consumer cosmetics: Implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology 2021, 15, 131–144.

[11]

Liu, C. S.; Wang, Y. J.; Zhang, G. F.; Pang, X. B.; Yan, J.; Wu, X. O.; Qiu, Y. H.; Wang, P.; Huang, H. S.; Wang, X. W. et al. Dermal toxicity influence of gold nanomaterials after embedment in cosmetics. Toxics 2022, 10, 276.

[12]

Huang, Y. M.; Li, P.; Zhao, R. K.; Zhao, L. E.; Liu, J.; Peng, S. J.; Fu, X. X.; Wang, X. J.; Luo, R. R.; Wang, R. et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother. 2022, 151, 113053.

[13]

Wei, W.; Yan, Z. Y.; Liu, X. T.; Qin, Z. M.; Tao, X. Q.; Zhu, X. K.; Song, E. Q.; Chen, C. Y.; Ke, P. C.; Leong, D. T. et al. Brain accumulation and toxicity profiles of silica nanoparticles: The influence of size and exposure route. Environ. Sci. Technol. 2022, 56, 8319–8325.

[14]

Song, Y.; Li, X.; Du, X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J. 2009, 34, 559–567.

[15]

Rinaldo, M.; Andujar, P.; Lacourt, A.; Martinon, L.; Canal Raffin, M.; Dumortier, P.; Pairon, J. C.; Brochard, P. Perspectives in biological monitoring of inhaled nanosized particles. Ann. Occup. Hyg. 2015, 59, 669–680.

[16]

Card, J. W.; Zeldin, D. C.; Bonner, J. C.; Nestmann, E. R. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L400–L411.

[17]

Elgharabawy, R. M.; Alhowail, A. H.; Emara, A. M.; Aldubayan, M. A.; Ahmed, A. S. The impact of chicory (Cichoriumintybus L. ) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021, 137, 111324.

[18]

Bondarenko, O.; Mortimer, M.; Kahru, A.; Feliu, N.; Javed, I.; Kakinen, A.; Lin, S. J.; Xia, T.; Song, Y.; Davis, T. P. et al. Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today 2021, 39, 101184.

[19]

Zihni, C.; Mills, C.; Matter, K.; Balda, M. S. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580.

[20]

Sawada, N.; Murata, M.; Kikuchi, K.; Osanai, M.; Tobioka, H.; Kojima, T.; Chiba, H. Tight junctions and human diseases. Med. Electron Microsc. 2003, 36, 147–156.

[21]

Shen, L.; Black, E. D.; Witkowski, E. D.; Lencer, W. I.; Guerriero, V.; Schneeberger, E. E.; Turner, J. R. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci. 2006, 119, 2095–2106.

[22]

Li, L. X.; Gao, Y.; Chen, H. Q.; Jesus, T.; Tang, E.; Li, N.; Lian, Q. Q.; Ge, R. S.; Cheng, C. Y. Cell polarity, cell adhesion, and spermatogenesis: Role of cytoskeletons. F1000Research 2017, 6, 1565.

[23]

Leerberg, J. M.; Yap, A. S. Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Protoplasma 2013, 250, 817–829.

[24]

Meng, W. X.; Mushika, Y.; Ichii, T.; Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 2008, 135, 948–959.

[25]

Vinken, M.; Ceelen, L.; Vanhaecke, T.; Rogiers, V. Inhibition of gap junctional intercellular communication by toxic metals. Chem. Res. Toxicol. 2010, 23, 1862–1867.

[26]

Aasen, T.; Mesnil, M.; Naus, C. C.; Lampe, P. D.; Laird, D. W. Erratum: Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 2016, 17, 74.

[27]

Kar, R.; Batra, N.; Riquelme, M. A.; Jiang, J. X. Biological role of connexin intercellular channels and hemichannels. Arch. Biochem. Biophys. 2012, 524, 2–15.

[28]

Beyer, E. C.; Ebihara, L.; Berthoud, V. M. Connexin mutants and cataracts. Front. Pharmacol. 2013, 4, 43.

[29]
Martin, T. A.; Mason, M. D.; Jiang, W. G. Tight junctions in cancer metastasis. Front. Biosci. (Landmark Ed. ) 2011, 16, 898–936.
[30]

Piche, T.; Barbara, G.; Aubert, P.; Bruley des Varannes, S.; Dainese, R.; Nano, J. L.; Cremon, C.; Stanghellini, V.; De Giorgio, R.; Galmiche, J. P. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut 2009, 58, 196–201.

[31]

Li, L. Q.; Liu, Q.; Shang, T. Y.; Song, W.; Xu, D. M.; Allen, T. D.; Wang, X.; Jeong, J.; Lobe, C. G.; Liu, J. Aberrant activation of Notch1 signaling in glomerular endothelium induces albuminuria. Circ. Res. 2021, 128, 602–618.

[32]

Trovato-Salinaro, A.; Trovato-Salinaro, E.; Failla, M.; Mastruzzo, C.; Tomaselli, V.; Gili, E.; Crimi, N.; Condorelli, D. F.; Vancheri, C. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir. Res. 2006, 7, 122.

[33]

Božinović, K.; Nestić, D.; Centa, U. G.; Ambriović-Ristov, A.; Dekanić, A.; de Bisschop, L.; Remškar, M.; Majhen, D. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology 2020, 444, 152564.

[34]

Assadian, E.; Dezhampanah, H.; Seydi, E.; Pourahmad, J. Toxicity of Fe2O3 nanoparticles on human blood lymphocytes. J. Biochem. Mol. Toxicol. 2019, 33, e22303.

[35]

Canivet, L.; Denayer, F. O.; Dubot, P.; Garçon, G.; Lo Guidice, J. M. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J. Appl. Toxicol. 2021, 41, 203–215.

[36]

Bessa, M. J.; Brandão, F.; Fokkens, P. H. B.; Leseman, D. L. A. C.; Boere, A. J. F.; Cassee, F. R.; Salmatonidis, A.; Viana, M.; Vulpoi, A.; Simon, S. et al. In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: Air–liquid interface versus submerged cultures. Nanomaterials 2021, 11, 3225.

[37]

Zhang, Y. X.; Hai, Y.; Miao, Y. Q.; Qi, X.; Xue, W. M.; Luo, Y. N.; Fan, H. M.; Yue, T. L. The toxicity mechanism of different sized iron nanoparticles on human breast cancer (MCF7) cells. Food Chem. 2021, 341, 128263.

[38]

Pourhoseini, S.; Enos, R. T.; Murphy, A. E.; Cai, B.; Lead, J. R. Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells. Beilstein J. Nanotechnol. 2021, 12, 282–294.

[39]

Akhtar, M. J.; Ahamed, M.; Alhadlaq, H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation. Nanomaterials 2020, 10, 1675.

[40]

Vuković, B.; Milić, M.; Dobrošević, B.; Milić, M.; Ilić, K.; Pavičić, I.; Šerić, V.; Vrček, I. V. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials 2020, 10, 1390.

[41]

Li, W.; Jia, M. X.; Deng, J.; Wang, J. H.; Zuberi, Z.; Yang, S.; Ba, J.; Chen, Z. MicroRNA response and toxicity of potential pathways in human colon cancer cells exposed to titanium dioxide nanoparticles. Cancers 2020, 12, 1236.

[42]

Holmes, A. M.; Mackenzie, L.; Roberts, M. S. Disposition and measured toxicity of zinc oxide nanoparticles and zinc ions against keratinocytes in cell culture and viable human epidermis. Nanotoxicology 2020, 14, 263–274.

[43]

Coccini, T.; de Simone, U.; Roccio, M.; Croce, S.; Lenta, E.; Zecca, M.; Spinillo, A.; Avanzini, M. A. In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J. Appl. Toxicol. 2019, 39, 1320–1336.

[44]

Henson, T. E.; Navratilova, J.; Tennant, A. H.; Bradham, K. D.; Rogers, K. R.; Hughes, M. F. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 2019, 13, 795–811.

[45]

Verma, S. K.; Jha, E.; Panda, P. K.; Mukherjee, M.; Thirumurugan, A.; Makkar, H.; Das, B.; Parashar, S. K. S.; Suar, M. Mechanistic insight into ROS and neutral lipid alteration induced toxicity in the human model with fins (Danio rerio) by industrially synthesized titanium dioxide nanoparticles. Toxicol. Res. 2018, 7, 244–257.

[46]

De Simone, U.; Spinillo, A.; Caloni, F.; Gribaldo, L.; Coccini, T. Neuron-like cells generated from human umbilical cord lining-derived mesenchymal stem cells as a new in vitro model for neuronal toxicity screening: Using magnetite nanoparticles as an example. Int. J. Mol. Sci. 2020, 21, 271.

[47]

Wang, M.; Yang, Q.; Long, J.; Ding, Y.; Zou, X.; Liao, G.; Cao, Y. A comparative study of toxicity of TiO2, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. Int. J. Nanomed. 2018, 13, 8037–8049.

[48]

Korshed, P.; Li, L.; Liu, Z.; Mironov, A.; Wang, T. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells. Int. J. Nanomed. 2017, 13, 89–101.

[49]

Choi, J. H.; Lee, H.; Lee, H.; Lee, H. Dopant-dependent toxicity of CeO2 nanoparticles is associated with dynamic changes in H3K4me3 and H3K27me3 and transcriptional activation of NRF2 gene in HaCaT human keratinocytes. Int. J. Mol. Sci. 2021, 22, 3087.

[50]

Su, H.; Li, Z.; Lazar, L.; Alhamoud, Y.; Song, X.; Li, J.; Wang, Y. F.; Fiati kenston, S. S.; Lqbal, M. Z.; Wu, A. G. et al. In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4-TiO2 nanoparticles in human liver cells. Environ. Toxicol. 2018, 33, 1078–1088.

[51]

Martínez-Rodríguez, N. L.; Tavárez, S.; González-Sánchez, Z. I. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol. in Vitro 2019, 57, 54–61.

[52]

Montalvo-Quiros, S.; Luque-Garcia, J. L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem. Toxicol. 2019, 127, 197–205.

[53]

Remzova, M.; Zouzelka, R.; Brzicova, T.; Vrbova, K.; Pinkas, D.; Rőssner, P.; Topinka, J.; Rathousky, J. Toxicity of TiO2, ZnO, and SiO2 nanoparticles in human lung cells: Safe-by-design development of construction materials. Nanomaterials 2019, 9, 968.

[54]

Mittal, S.; Pandey, A. K. Cerium oxide nanoparticles induced toxicity in human lung cells: Role of ROS mediated DNA damage and apoptosis. Biomed Res. Int. 2014, 2014, 891934.

[55]

Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

[56]

Tay, C. Y.; Setyawati, M. I.; Leong, D. T. Nanoparticle density: A critical biophysical regulator of endothelial permeability. ACS Nano 2017, 11, 2764–2772.

[57]

Wang, J. P.; Zhang, L. Y.; Peng, F.; Shi, X. H.; Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 2018, 30, 3759–3767.

[58]

Setyawati, M. I.; Mochalin, V. N.; Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016, 10, 1170–1181.

[59]

Abbott, N. J.; Friedman, A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia 2012, 53, 1–6.

[60]

Löscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 2005, 76, 22–76.

[61]

Silva, G. A. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. Neurosci. 2006, 7, 65–74.

[62]

Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.

[63]

Disdier, C.; Devoy, J.; Cosnefroy, A.; Chalansonnet, M.; Herlin-Boime, N.; Brun, E.; Lund, A.; Mabondzo, A. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part. Fibre Toxicol. 2015, 12, 27.

[64]

Xu, L. M.; Dan, M.; Shao, A. L.; Cheng, X.; Zhang, C. P.; Yokel, R. A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int. J. Nanomed. 2015, 10, 6105–6119.

[65]

Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53.

[66]

Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006.

[67]

Bloom, G. S. Amyloid-β and Tau: The trigger and bullet in alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508.

[68]

Sinha, S.; Lieberburg, I. Cellular mechanisms of β-amyloid production and secretion. Proc. Natl. Acad. Sci. USA 1999, 96, 11049–11053.

[69]

Smolarkiewicz, M.; Skrzypczak, T.; Wojtaszek, P. The very many faces of presenilins and the γ-secretase complex. Protoplasma 2013, 250, 997–1011.

[70]

Hsiao, Y. H.; Lin, C. I.; Liao, H.; Chen, Y. H.; Lin, S. H. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int. J. Mol. Sci. 2014, 15, 20876–20899.

[71]

Lin, H. C.; Ho, M. Y.; Tsen, C. M.; Huang, C. C.; Wu, C. C.; Huang, Y. J.; Hsiao, I. L.; Chuang, C. Y. From the cover: Comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood-brain barrier. Toxicol. Sci. 2017, 158, 151–163.

[72]

Abid, M. F.; Abdulrahman, A. A.; Hamza, N. H. Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment. J. Environ. Health Sci. Eng. 2014, 12, 145.

[73]

Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Cogliano, V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006, 7, 295–296.

[74]

Brun, E.; Carrière, M.; Mabondzo, A. In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials 2012, 33, 886–896.

[75]

Tang, L.; Cheng, J. J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312.

[76]

Liu, X.; Sui, B. Y.; Sun, J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo: Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017, 121, 64–82.

[77]

Ceccariglia, S.; D’altocolle, A.; Del Fa’, A.; Silvestrini, A.; Barba, M.; Pizzolante, F.; Repele, A.; Michetti, F.; Gangitano, C. Increased expression of Aquaporin 4 in the rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience 2014, 274, 273–288.

[78]

Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis. 2005, 8, 171–182.

[79]

Becaria, A.; Campbell, A.; Bondy, S. C. Aluminum as a toxicant. Toxicol. Ind. Health 2016, 18, 309–320.

[80]

Chen, L.; Yokel, R. A.; Hennig, B.; Toborek, M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J. Neuroimmune Pharmacol. 2008, 3, 286–295.

[81]

Silverstone, A. E.; Rosenbaum, P. F.; Weinstock, R. S.; Bartell, S. M.; Foushee, H. R.; Shelton, C.; Pavuk, M. Polychlorinated biphenyl (PCB) exposure and diabetes: Results from the anniston community health survey. Environ. Health Perspect. 2012, 120, 727–732.

[82]

Saghir, S. A.; Hansen, L. G.; Holmes, K. R.; Kodavanti, P. R. S. Differential and non-uniform tissue and brain distribution of two distinct 14C-hexachlorobiphenyls in weanling rats. Toxicol. Sci. 2000, 54, 60–70.

[83]

Zhang, B.; Chen, L.; Choi, J. J.; Hennig, B.; Toborek, M. Cerebrovascular toxicity of PCB153 is enhanced by binding to silica nanoparticles. J. Neuroimmune Pharmacol. 2012, 7, 991–1001.

[84]

Haorah, J.; Ramirez, S. H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J. Neurochem. 2007, 101, 566–576.

[85]

Rosenberg, G. A.; Estrada, E. Y.; Dencoff, J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998, 29, 2189–2195.

[86]

Lo, E. H.; Dalkara, T.; Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 2003, 4, 399–414.

[87]

Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636–1653.

[88]

Saleh, H. M.; El-Sayed, Y. S.; Naser, S. M.; Eltahawy, A. S.; Onoda, A.; Umezawa, M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. Environ. Sci. Pollut. Res. 2017, 24, 24593–24601.

[89]

Mohamed, N. E. S.; Abd El-Moneim, A. E. Ginkgo biloba extract alleviates oxidative stress and some neurotransmitters changes induced by aluminum chloride in rats. Nutrition 2017, 35, 93–99.

[90]

Lebda, M. A.; Sadek, K. M.; Tohamy, H. G.; Abouzed, T. K.; Shukry, M.; Umezawa, M.; El-Sayed, Y. S. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci. 2018, 212, 251–260.

[91]

Maynard, A. D. A decade of uncertainty. Nat. Nanotechnol. 2014, 9, 159–160.

[92]

Frey, T.; Antonetti, D. A. Alterations to the blood-retinal barrier in diabetes: Cytokines and reactive oxygen species. Antioxid. Redox Signal. 2011, 15, 1271–1284.

[93]

Díaz-Coránguez, M.; Ramos, C.; Antonetti, D. A. The inner blood-retinal barrier: Cellular basis and development. Vision Res. 2017, 139, 123–137.

[94]

Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46.

[95]

Chan, Y. J.; Liao, P. L.; Tsai, C. H.; Cheng, Y. W.; Lin, F. L.; Ho, J. D.; Chen, C. Y.; Li, C. H. Titanium dioxide nanoparticles impair the inner blood-retinal barrier and retinal electrophysiology through rapid ADAM17 activation and claudin-5 degradation. Part. Fibre Toxicol. 2021, 18, 4.

[96]

Sel, S.; Kalinski, T.; Enssen, I.; Kaiser, M.; Nass, N.; Trau, S.; Wollensak, G.; Bräuer, L.; Jäger, K.; Paulsen, F. Expression analysis of ADAM17 during mouse eye development. Ann. Anat. 2012, 194, 334–338.

[97]
Simberg, D.; Zhang, W. M.; Merkulov, S.; McCrae, K.; Park, J. H.; Sailor, M. J.; Ruoslahti, E. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J. Control. Release 2009, 140, 301–305.
[98]

Mecke, A.; Majoros, I. J.; Patri, A. K.; Baker, J. R.; Banaszak Holl, M. M.; Orr, B. G. Lipid bilayer disruption by polycationic polymers:  The roles of size and chemical functional group. Langmuir 2005, 21, 10348–10354.

[99]

Wittekindt, O. H. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017, 469, 135–147.

[100]

Trosko, J. E.; Ruch, R. J. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr. Drug Targets 2002, 3, 465–482.

[101]

Hou, J.; Wu, Y. Z.; Li, X.; Wei, B. B.; Li, S. G.; Wang, X. K. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 2018, 193, 852–860.

[102]

Detampel, P.; Ganguly, A.; Tehranian, S.; Green, F.; Singha, S.; Santamaria, P.; Jeje, A. A.; Cho, C. S.; Petri, B. Amrein, M. W. In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. PLoS One 2019, 14, e0223339.

[103]

Derk, R.; Davidson, D. C.; Manke, A.; Stueckle, T. A.; Rojanasakul, Y.; Wang, L. Y. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sens. Bio-Sens. Res. 2015, 3, 38–45.

[104]

Porter, D. W.; Hubbs, A. F.; Chen, B. T.; McKinney, W.; Mercer, R. R.; Wolfarth, M. G.; Battelli, L.; Wu, N. Q.; Sriram, K.; Leonard, S. et al. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 2012, 7, 1179–1194.

[105]

Faner, R.; Rojas, M.; MacNee, W.; Agustí, A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 306–313.

[106]

Freund-Michel, V.; Muller, B.; Marthan, R.; Savineau, J. P.; Guibert, C. Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol. Ther. 2016, 164, 105–119.

[107]

Nagibin, V.; Egan Benova, T.; Viczenczova, C.; Szeiffova Bacova, B.; Dovinova, I.; Barancik, M.; Tribulova, N. Ageing related down-regulation of myocardial connexin-43 and up-regulation of MMP-2 may predict propensity to atrial fibrillation in experimental animals. Physiol. Res. 2016, 65, S91–S100.

[108]

Spannbrucker, T.; Ale-Agha, N.; Goy, C.; Dyballa-Rukes, N.; Jakobs, P.; Jander, K.; Altschmied, J.; Unfried, K.; Haendeler, J. Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Exp. Gerontol. 2019, 117, 106–112.

[109]

Leung, C. C.; Yu, I. T. S.; Chen, W. H. Silicosis. Lancet 2012, 379, 2008–2018.

[110]

Liu, Y. Q.; Wei, H. Y.; Tang, J.; Yuan, J. M.; Wu, M. M.; Yao, C. J.; Hosoi, K.; Yu, S. L.; Zhao, X. Y.; Han, Y. et al. Dysfunction of pulmonary epithelial tight junction induced by silicon dioxide nanoparticles via the ROS/ERK pathway and protein degradation. Chemosphere 2020, 255, 126954.

[111]

Chen, Q. S.; Wang, Q. W.; Zhu, J. H.; Xiao, Q. Z.; Zhang, L. Reactive oxygen species: Key regulators in vascular health and diseases. Br. J. Pharmacol. 2018, 175, 1279–1292.

[112]

Zhang, L.; Wei, P. F.; Song, Y. H.; Dong, L.; Wu, Y. D.; Hao, Z. Y.; Fan, S.; Tai, S.; Meng, J. L.; Lu, Y. et al. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019, 216, 119248.

[113]

Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H. A.; Delaloye, J. F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012, 481, 85–89.

[114]

Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.

[115]

Fröhlich, E. E.; Fröhlich, E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int. J. Mol. Sci. 2016, 17, 509.

[116]

Chen, C. M.; Wu, M. L.; Ho, Y. C.; Gung, P. Y.; Tsai, M. H.; Orekhov, A. N.; Sobenin, I. A.; Lin, P. P.; Yet, S. F. Exposure to zinc oxide nanoparticles disrupts endothelial tight and adherens junctions and induces pulmonary inflammatory cell infiltration. Int. J. Mol. Sci. 2020, 21, 3437.

[117]

Dewey, K. G. Cross-cultural patterns of growth and nutritional status of breast-fed infants. Am. J. Clin. Nutr. 1998, 67, 10–17.

[118]

Labbok, M. H.; Clark, D.; Goldman, A. S. Breastfeeding: Maintaining an irreplaceable immunological resource. Nat. Rev. Immunol. 2004, 4, 565–572.

[119]

Anderson, J. W.; Johnstone, B. M.; Remley, D. T. Breast-feeding and cognitive development: A meta-analysis. Am. J. Clin. Nutr. 1999, 70, 525–535.

[120]
Collaborative group on hormonal factors in breast cancer: Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 2002, 360, 187–195.
[121]

Luan, N. N.; Wu, Q. J.; Gong, T. T.; Vogtmann, E.; Wang, Y. L.; Lin, B. Breastfeeding and ovarian cancer risk: A meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2013, 98, 1020–1031.

[122]

Tsugami, Y.; Matsunaga, K.; Suzuki, T.; Nishimura, T.; Kobayashi, K. Phytoestrogens weaken the blood-milk barrier in lactating mammary epithelial cells by affecting tight junctions and cell viability. J. Agric. Food Chem. 2017, 65, 11118–11124.

[123]

Wang, J.; Johnson, T.; Sahin, L.; Tassinari, M. S.; Anderson, P. O.; Baker, T. E.; Bucci-Rechtweg, C.; Burckart, G. J.; Chambers, C. D.; Hale, T. W. et al. Evaluation of the safety of drugs and biological products used during lactation: Workshop summary. Clin. Pharmacol. Ther. 2017, 101, 736–744.

[124]

Dianati, E.; Plante, I. Analysis of protein–protein interactions and co-localization between components of gap, tight, and adherens junctions in murine mammary glands. J. Vis. Exp. 2017, 55772.

[125]

Verstegen, R. H. J.; Ito, S. Drugs in lactation. J. Obstet. Gynaecol. Res. 2019, 45, 522–531.

[126]

Zhang, C. K.; Zhai, S. M.; Wu, L.; Bai, Y. H.; Jia, J. B.; Zhang, Y.; Zhang, B.; Yan, B. Induction of size-dependent breakdown of blood-milk barrier in lactating mice by TiO2 nanoparticles. PLoS One 2015, 10, e0122591.

[127]

Ulluwishewa, D.; Anderson, R. C.; McNabb, W. C.; Moughan, P. J.; Wells, J. M.; Roy, N. C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011, 141, 769–776.

[128]

Wu, J. R.; Lai, X.; Cui, G. M.; Chen, Q. Y.; Liu, J.; Kang, Y. Y.; Zhang, Y. L.; Feng, X. L.; Hu, C.; Shao, L. Q. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. J. Hazard. Mater. 2020, 399, 122809.

[129]

Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2012, 70, 631–659.

[130]

Gaillet, S.; Rouanet, J. M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63.

[131]

Odenwald, M. A.; Turner, J. R. Intestinal permeability defects: Is it time to treat. Clin. Gastroenterol. Hepatol. 2013, 11, 1075–1083.

[132]

Zhao, Y.; Tang, Y. Z.; Liu, S. J.; Jia, T. T.; Zhou, D. G.; Xu, H. Y. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage. Foods 2021, 10, 986.

[133]

Su, L. P.; Nalle, S. C.; Shen, L.; Turner, E. S.; Singh, G.; Breskin, L. A.; Khramtsova, E. A.; Khramtsova, G.; Tsai, P. Y.; Fu, Y. X. et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013, 145, 407–415.

[134]

Zhang, Y.; Chen, Y. S.; Westerhoff, P.; Hristovski, K.; Crittenden, J. C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212.

[135]

Koeneman, B. A.; Zhang, Y.; Hristovski, K.; Westerhoff, P.; Chen, Y. S.; Crittenden, J. C.; Capco, D. G. Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicol. in Vitro 2009, 23, 955–962.

[136]

Kalive, M.; Zhang, W.; Chen, Y. S.; Capco, D. G. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol. Toxicol. 2012, 28, 343–368.

[137]

Williams, K. M.; Gokulan, K.; Cerniglia, C. E.; Khare, S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnol. 2016, 14, 62.

[138]

Orr, S. E.; Gokulan, K.; Boudreau, M.; Cerniglia, C. E.; Khare, S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague–Dawley rats. J. Nanobiotechnol. 2019, 17, 63.

[139]

Jésus, P.; Ouelaa, W.; François, M.; Riachy, L.; Guérin, C.; Aziz, M.; Do Rego, J. C.; Déchelotte, P.; Fetissov, S. O.; Coëffier, M. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin. Nutr. 2014, 33, 1046–1053.

[140]

Kinugasa, T.; Sakaguchi, T.; Gu, X. B.; Reinecker, H. C. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000, 118, 1001–1011.

[141]

Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M. J.; Galtier, P.; Gott, D. et al. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018, 16, e05088.

[142]

Cornu, R.; Chrétien, C.; Pellequer, Y.; Martin, H.; Béduneau, A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch. Toxicol. 2020, 94, 1191–1202.

[143]

Chen, Z. J.; Wang, Y.; Wang, X.; Zhuo, L.; Chen, S.; Tang, S. C.; Zhao, L.; Luan, X. G.; Jia, G. Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration. J. Appl. Toxicol. 2018, 38, 810–823.

[144]

Yao, L. Y.; Tang, Y. Z.; Chen, B. L.; Hong, W. D.; Xu, X. Y.; Liu, Y.; Aguilar, Z. P.; Xu, H. Y. Oral exposure of titanium oxide nanoparticles induce ileum physical barrier dysfunction via Th1/Th2 imbalance. Environ. Toxicol. 2020, 35, 982–990.

[145]

Martínez, C.; González-Castro, A.; Vicario, M.; Santos, J. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut Liver 2012, 6, 305–315.

[146]

Jiang, X. H.; Bukhari, I.; Zheng, W.; Yin, S.; Wang, Z.; Cooke, H. J.; Shi, Q. H. Blood-testis barrier and spermatogenesis: Lessons from genetically-modified mice. Asian J. Androl. 2014, 16, 572–580.

[147]

Hai, Y. N.; Hou, J. M.; Liu, Y.; Liu, Y.; Yang, H.; Li, Z.; He, Z. P. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 2014, 29, 66–75.

[148]

Liu, L. J.; He, Y. D.; Xiao, Z. P.; Tao, W. J.; Zhu, J.; Wang, B.; Liu, Z. X.; Wang, M. Q. Effects of selenium nanoparticles on reproductive performance of male sprague-dawley rats at supranutritional and nonlethal levels. Biol. Trace Elem. Res. 2017, 180, 81–89.

[149]

Shukla, R.; Kumar, A.; Pandey, A. K.; Singh, S. S.; Dhawan, A. Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J. Biomed. Nanotechnol. 2011, 7, 100–101.

[150]

Jia, F.; Sun, Z. L.; Yan, X. Y.; Zhou, B. R.; Wang, J. D. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch. Toxicol. 2014, 88, 781–788.

[151]

Ni, D. Q.; Ma, D. D.; Hao, S. L.; Yang, W. X.; Kovacs, T.; Tan, F. Q. Titanium dioxide nanoparticles perturb the blood-testis barrier via disruption of actin-based cell adhesive function. Aging 2021, 13, 25440–25452.

[152]

Zhang, X. F.; Choi, Y. J.; Han, J. W.; Kim, E.; Park, J. H.; Gurunathan, S.; Kim, J. H. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int. J. Nanomed. 2015, 10, 1335–1357.

[153]

Watson, E. D.; Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology 2005, 20, 180–193.

[154]

Teng, C. F.; Jia, J. B.; Wang, Z. P.; Sharma, V. K.; Yan, B. Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicol. Environ. Saf. 2019, 182, 109439.

[155]

Zhang, D. Q.; Eng, C. Y.; Stuckey, D. C.; Zhou, Y. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor. Chemosphere 2017, 171, 446–459.

[156]

Satarug, S.; Garrett, S. H.; Sens, M. A.; Sens, D. A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190.

[157]

Jia, J. B.; Li, F. F.; Zhai, S. M.; Zhou, H. Y.; Liu, S. J.; Jiang, G. B.; Yan, B. Susceptibility of overweight mice to liver injury as a result of the ZnO nanoparticle-enhanced liver deposition of Pb2+. Environ. Sci. Technol. 2017, 51, 1775–1784.

[158]
Wei, Y. Y.; Li, Y.; Jia, J. B.; Jiang, Y. G.; Zhao, B.; Zhang, Q.; Yan, B. Aggravated hepatotoxicity occurs in aged mice but not in young mice after oral exposure to zinc oxide nanoparticles. NanoImpact 2016, 3–4, 1–11.
[159]

Zhang, X. F.; Gurunathan, S.; Kim, J. H. Effects of silver nanoparticles on neonatal testis development in mice. Int. J. Nanomed. 2015, 10, 6243–6256.

[160]

Teng, C. F.; Jia, J. B.; Wang, Z. P.; Yan, B. Oral Co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol. Environ. Saf. 2020, 189, 109956.

[161]

Qiu, L. L.; Qian, Y. Y.; Liu, Z. Z.; Wang, C.; Qu, J. H.; Wang, X. K.; Wang, S. L. Perfluorooctane sulfonate (PFOS) disrupts blood-testis barrier by down-regulating junction proteins via p38 MAPK/ATF2/MMP9 signaling pathway. Toxicology 2016, 373, 1–12.

[162]

Wang, Z. J.; Zhang, C. C.; Liu, X. J.; Huang, F. Y.; Wang, Z. P.; Yan, B. Oral intake of ZrO2 nanoparticles by pregnant mice results in nanoparticles’ deposition in fetal brains. Ecotoxicol. Environ. Saf. 2020, 202, 110884.

[163]

Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708.

[164]

Hansen, A.; Bi, P.; Nitschke, M.; Pisaniello, D.; Ryan, P.; Sullivan, T.; Barnett, A. G. Particulate air pollution and cardiorespiratory hospital admissions in a temperate Australian city: A case-crossover analysis. Sci. Total Environ. 2012, 416, 48–52.

[165]

Du, Z. J.; Cui, G. Q.; Zhang, J.; Liu, X. M.; Zhang, Z. H.; Jia, Q.; Ng, J. C.; Peng, C.; Bo, C. X.; Shao, H. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway. Int. J. Nanomedicine 2017, 12, 2179–2188.

[166]

Wei, L. Y.; Lu, J. R.; Xu, H. Z.; Patel, A.; Chen, Z. S.; Chen, G. F. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601.

[167]

Guo, H.; Zhang, J.; Boudreau, M.; Meng, J.; Yin, J. J.; Liu, J.; Xu, H. Y. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part. Fibre Toxicol. 2016, 13, 21.

[168]

Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals 2013, 26, 609–621.

[169]

Singh, A. P.; Mia, B.; Saxena, R. K. Acid-functionalized single-walled carbon nanotubes alter epithelial tight junctions and enhance paracellular permeability. J. Biosci. 2020, 45, 23.

[170]

Lam, C. W.; James, J. T.; McCluskey, R.; Arepalli, S.; Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217.

[171]

Blazer-Yost, B. L.; Banga, A.; Amos, A.; Chernoff, E.; Lai, X. Y.; Li, C.; Mitra, S.; Witzmann, F. A. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 2011, 5, 354–371.

[172]

Sugita, K.; Kabashima, K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J. Leukoc. Biol. 2020, 107, 749–762.

[173]

Yuan, J. L.; Zhang, Y.; Zhang, Y. B.; Mo, Y. Q.; Zhang, Q. W. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part. Fibre Toxicol. 2021, 18, 13.

[174]

Nohynek, G. J.; Dufour, E. K. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health. Arch. Toxicol. 2012, 86, 1063–1075.

[175]

Labouta, H. I.; Liu, D. C.; Lin, L. L.; Butler, M. K.; Grice, J. E.; Raphael, A. P.; Kraus, T.; El-Khordagui, L. K.; Soyer, H. P.; Roberts, M. S. et al. Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 2011, 28, 2931–2944.

[176]

Vankoningsloo, S.; Piret, J. P.; Saout, C.; Noel, F.; Mejia, J.; Zouboulis, C. C.; Delhalle, J.; Lucas, S.; Toussaint, O. Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: Effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology 2010, 4, 84–97.

[177]

Liu, Y. P.; Zhu, S.; Gu, Z. J.; Chen, C. Y.; Zhao, Y. L. Toxicity of manufactured nanomaterials. Particuology 2022, 69, 31–48.

[178]

Setyawati, M. I.; Leong, D. T. Mesoporous silica nanoparticles as an antitumoral-angiogenesis strategy. ACS Appl. Mater. Interfaces 2017, 9, 6690–6703.

[179]

Kota, D.; Kang, L.; Rickel, A.; Liu, J. Y.; Smith, S.; Hong, Z. K.; Wang, C. Z. Low doses of zeolitic imidazolate framework-8 nanoparticles alter the actin organization and contractility of vascular smooth muscle cells. J. Hazard. Mater. 2021, 414, 125514.

[180]

Lu, X. F.; Zhu, Y.; Bai, R.; Wu, Z. S.; Qian, W. C.; Yang, L. Y.; Cai, R.; Yan, H.; Li, T.; Pandey, V. et al. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat. Nanotechnol. 2019, 14, 719–727.

[181]

Casals, E.; Zeng, M. L.; Parra-Robert, M.; Fernández-Varo, G.; Morales-Ruiz, M.; Jiménez, W.; Puntes, V.; Casals, G. Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration. Small 2020, 16, 1907322.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 November 2022
Revised: 18 December 2022
Accepted: 23 December 2022
Published: 16 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the fundings provided by the National Natural Science Foundation of China (Nos. 22104073 and 22004048), the Natural Science Foundation of Shandong Province of China (Nos. ZR2021QB119, 2022HWYQ-079, and ZR2020QB171), and the Youth Innovation Science and Technology Program of Shandong Provincial Universities (No. 2021KJ100).

Return