Journal Home > Volume 16 , Issue 10

Given the current shortage of resources and environmental pollution, rationally designing and developing low-cost and high-efficiency bifunctional electrocatalysts is an urgent and challenging task. It is widely recognized that element doping can effectively improve the electrocatalytic activity by adjusting the microstructure, morphology, and electronic structure. Therefore, this work rationally designs and prepares three-dimensional flower-like structured W-doped FeNi2S4/Ni3S2/NF heterojunctions as efficient bifunctional electrocatalysts for overall water splitting. In 1 M KOH, the prepared W-FeNi2S4/Ni3S2/NF electrocatalyst can effectively drive both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) processes, and only needs overpotentials of 93 and 210 mV to reach current densities of 10 and 50 mA·cm−2. In the double electrode cell composed by W-FeNi2S4/Ni3S2/NF electrocatalyst, a low cell voltage of 1.52 V was required to reach a current density of 10 mA·cm−2, and 91.6% of this value was preserved after 24 h electrolysis operation. The performance of FeNi2S4/Ni3S2/NF electrocatalyst is superior to most of the current bifunctional electrocatalytic materials. Density functional theory (DFT) theoretical calculations also revealed a more intense electron transfer process that can be facilitated by constructing FeNi2S4 and Ni3S2/NF interface, which may be the main reason for the archived excellent electrochemical performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

W-doped FeNi2S4/Ni3S2/NF with interfacial effect as efficient bifunctional electrocatalyst for overall water splitting

Show Author's information Jing Jiang1,2Hui Su1,2Shaojia Song1,2Weilong Liu1,2Ning Li1,2Yangqin Gao1,2Lei Ge1,2( )
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China

Abstract

Given the current shortage of resources and environmental pollution, rationally designing and developing low-cost and high-efficiency bifunctional electrocatalysts is an urgent and challenging task. It is widely recognized that element doping can effectively improve the electrocatalytic activity by adjusting the microstructure, morphology, and electronic structure. Therefore, this work rationally designs and prepares three-dimensional flower-like structured W-doped FeNi2S4/Ni3S2/NF heterojunctions as efficient bifunctional electrocatalysts for overall water splitting. In 1 M KOH, the prepared W-FeNi2S4/Ni3S2/NF electrocatalyst can effectively drive both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) processes, and only needs overpotentials of 93 and 210 mV to reach current densities of 10 and 50 mA·cm−2. In the double electrode cell composed by W-FeNi2S4/Ni3S2/NF electrocatalyst, a low cell voltage of 1.52 V was required to reach a current density of 10 mA·cm−2, and 91.6% of this value was preserved after 24 h electrolysis operation. The performance of FeNi2S4/Ni3S2/NF electrocatalyst is superior to most of the current bifunctional electrocatalytic materials. Density functional theory (DFT) theoretical calculations also revealed a more intense electron transfer process that can be facilitated by constructing FeNi2S4 and Ni3S2/NF interface, which may be the main reason for the archived excellent electrochemical performance.

Keywords: density functional theory (DFT) calculation, water splitting, oxygen evolution reaction (OER), bifunctional electrocatalysts

References(64)

[1]

Ren, J. T.; Yao, Y. L.; Yuan, Z. Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances. Green Energy Environ. 2021, 6, 620–643.

[2]

Su, H.; Jiang, J.; Song, S. J.; An, B. H.; Li, N.; Gao, Y. Q.; Ge, L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chin. J. Catal. 2023, 44, 7–49.

[3]

Gu, M. Z.; Deng, X. Y.; Lin, M.; Wang, H.; Gao, A.; Huang, X. M.; Zhang, X. J. Ultrathin NiCo bimetallic molybdate nanosheets coated CuOx nanotubes: Heterostructure and bimetallic synergistic optimization of the active site for highly efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2102361.

[4]

Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

[5]

Li, X. L.; Li, N.; Gao, Y. Q.; Ge, L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. Chin. J. Catal. 2022, 43, 679–707.

[6]

Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

[7]

Jiang, J.; Li, F. Y.; Su, H.; Gao, Y. Q.; Li, N.; Ge, L. Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chin. Chem. Lett. 2022, 33, 4367–4374.

[8]

Su, H.; Song, S. J.; Li, S. S.; Gao, Y. Q.; Ge, L.; Song, W. Y.; Ma, T. Y.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B Environ. 2021, 293, 120225.

[9]

Su, H.; Song, S. J.; Gao, Y. Q.; Li, N.; Fu, Y.; Ge, L.; Song, W. Y.; Liu, J.; Ma, T. Y. In situ electronic redistribution tuning of NiCo2S4 nanosheets for enhanced electrocatalysis. Adv. Funct. Mater. 2022, 32, 2109731.

[10]

Yang, Y. Y.; Meng, H. X.; Kong, C.; Yan, S. H.; Ma, W. X.; Zhu, H.; Ma, F. Q.; Wang, C.; Hu, Z. Heterogeneous Ni3S2@FeNi2S4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J. Colloid Interface Sci. 2021, 599, 300–312.

[11]

Zhang, F. S.; Wang, J. W.; Luo, J.; Liu, R. R.; Zhang, Z. M.; He, C. T.; Lu, T. B. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 2018, 9, 1375–1384.

[12]

Cheng, F. P.; Wang, L.; Wang, H. Q.; Lei, C. J.; Yang, B.; Li, Z. J.; Zhang, Q. H.; Lei, L. C.; Wang, S. B.; Hou, Y. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy 2020, 71, 104621.

[13]

Khan, R.; Samanta, M.; Ghosh, S.; Das, N. S.; Chattopadhyay, K. K. Co incorporated Ni3S2 hierarchical nano/micro cactus for electrochemical water splitting. Int. J. Hydrogen Energy 2019, 44, 21315–21323.

[14]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. J. Phys. Chem. C 2016, 352, 333–337.

[15]

Dou, Y. H.; Yuan, D.; Yu, L. P.; Zhang, W. P.; Zhang, L.; Fan, K. C.; Al-Mamun, M.; Liu, P. R.; He, C. T.; Zhao, H. J. Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis. Adv. Mater. 2022, 34, 2104667.

[16]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

[17]

Zheng, X. Q.; Zhang, L.; Huang, J. W.; Peng, L. S.; Deng, M. M.; Li, L.; Li, J.; Chen, H. M.; Wei, Z. D. Boosting hydrogen evolution reaction of nickel sulfides by introducing nonmetallic dopants. J. Phys. Chem. C 2020, 124, 24223–24231.

[18]

Zhou, Y. N.; Yu, W. L.; Cao, Y. N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. L.; Fan, R. Y.; Zhou, Y. L.; Chai, Y. M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B Environ. 2021, 292, 120150.

[19]

Ouyang, C. B.; Wang, X.; Wang, C.; Zhang, X. X.; Wu, J. H.; Ma, Z. L.; Dou, S.; Wang, S. Y. Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim. Acta 2015, 174, 297–301.

[20]

Lim, D.; Oh, E.; Lim, C.; Shim, S. E.; Baeck, S. H. Fe-doped Ni3S2 nanoneedles directly grown on Ni foam as highly efficient bifunctional electrocatalysts for alkaline overall water splitting. Electrochim. Acta 2020, 361, 137080.

[21]

Liu, H. Y.; Guo, Z. X.; Lian, J. S. Cu-doped Ni3S2 nanosheet arrays on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. J. Solid State Chem. 2021, 293, 121776.

[22]

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickeliron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

[23]

Sun, Q. Q.; Zhou, M.; Shen, Y. Q.; Wang, L. Y.; Ma, Y.; Li, Y. B.; Bo, X.; Wang, Z. L.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 2019, 373, 180–189.

[24]

Ye, L.; Du, Y. Q.; Zhao, Y. G.; Zhao, L. J. W-doped Ni3S2 nanoparticles modified with NiFeLa hydroxide for hydrogen evolution. ACS Appl. Nano Mater. 2020, 8372–8381.

[25]

Wang, C. M.; Bai, S.; Xiong, Y. J. Recent advances in surface and interface engineering for electrocatalysis. Chin. J. Catal. 2015, 36, 1476–1493.

[26]

Zhu, W. J.; Chen, W. X.; Yu, H. H.; Zeng, Y.; Ming, F. W.; Liang, H. F.; Wang, Z. C. NiCo/NiCo-OH and NiFe/NiFe-OH core–shell nanostructures for water splitting electrocatalysis at large currents. Appl. Catal. B Environ. 2020, 278, 119326.

[27]

Wang, A. X.; Zhang, L. H.; Li, X. L.; Gao, Y. Q.; Li, N.; Lu, G. W.; Ge, L. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance. Chin. J. Catal. 2022, 43, 1295–1305.

[28]

Dong, W. X.; Zhou, H. B.; Mao, B. D.; Zhang, Z. Y.; Liu, Y. S.; Liu, Y. H.; Li, F. H.; Zhang, D. Q.; Zhang, D. X.; Shi, W. D. Efficient MOF-derived V-Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in alkali. Int. J. Hydrogen Energy 2021, 46, 10773–10782.

[29]

Quan, B.; Tong, H. M.; Liu, C. C.; Li, D.; Meng, S. C.; Chen, M.; Zhu, J. J.; Jiang, D. L. Integration of ZnCo2S4 nanowires arrays with NiFe-LDH nanosheet as water dissociation promoter for enhanced electrocatalytic hydrogen evolution. Electrochim. Acta 2019, 324, 134861.

[30]

Lv, X. F.; Liu, G. S.; Liu, S.; Chen, W. T.; Cao, D. H.; Song, T. Z.; Wang, N. N.; Zhu, Y. Q. Three-dimensional flower-like Fe, C-doped-MoS2/Ni3S2 heterostructures spheres for accelerating electrocatalytic oxygen and hydrogen evolution. Crystals 2021, 11, 340.

[31]

Li, S. S.; Wang, L.; Su, H.; Hong, A. N.; Wang, Y. X.; Yang, H. J.; Ge, L.; Song, W. Y.; Liu, J.; Ma, T. Y. et al. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2200733.

[32]

Liu, C. Y.; Guo, Y. X.; Yu, Z. H.; Wang, H.; Yao, H. Q.; Li, J.; Shi, K. R.; Ma, S. L. Hierarchical microsphere assembled by nanoplates embedded with MoS2 and (NiFe)Sx nanoparticles as low-cost electrocatalyst for hydrogen evolution reaction. Nanotechnology 2020, 31, 035403.

[33]

Xu, Y.; Chai, X. J.; Ren, T. L.; Yu, H. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Synergism of interface and electronic effects: Bifunctional N-doped Ni3S2/N-doped MoS2 hetero-nanowires for efficient electrocatalytic overall water splitting. Chem.—Eur. J. 2019, 25, 16074–16080.

[34]

Chen, X. J.; Yang, L. K.; Huang, Y. X.; Ge, S. P.; Zhang, H.; Cui, Y. M.; Huang, A. P.; Xiao, Z. S. Fabrication of a hierarchical Ni(OH)2@Ni3S2/Ni foam electrode from a Prussian blue analogue-based composite with enhanced electrochemical capacitive and electrocatalytic properties. Chem.—Eur. J. 2020, 26, 1111–1116.

[35]

Dai, W. J.; Ren, K.; Zhu, Y. A.; Pan, Y.; Yu, J.; Lu, T. Flower-like CoNi2S4/Ni3S2 nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 2020, 844, 156252.

[36]

Ganesan, P.; Sivanantham, A.; Shanmugam, S. Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. J. Mater. Chem. A 2016, 4, 16394–16402.

[37]

Li, J. H.; Yang, Z.; Lin, Y.; Wang, J. L.; Jiao, F. X.; Gong, Y. Q. Self-supported molybdenum doping Ni3S2 nanoneedles as efficient bifunctional catalysts for overall water splitting. New J. Chem. 2020, 44, 8578–8586.

[38]

Yu, J.; Tian, Y. M.; Lin, Z. W.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Zhang, H. S.; Wang, J. NiSe2/Ni5P4 nanosheets on nitrogen-doped carbon nano-fibred skeleton for efficient overall water splitting. Colloids Surf. A Physicochem. Eng. Aspects 2021, 614, 126189.

[39]

Cao, L. M.; Wang, J. W.; Zhong, D. C.; Lu, T. B. Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 3224–3230.

[40]

Du, X. Q.; Huang, J. W.; Ding, Y. The mechanism change by switching the reactants from water to hydroxyl ions for electrocatalytic water oxidation: A case study of copper oxide microspheres. Dalton Trans. 2017, 46, 7327–7331.

[41]

Zhang, D. W.; Jiang, L. J.; Liu, Y. Y.; Qiu, L. J.; Zhang, J. M.; Yuan, D. S. Ni3S2-MoSx nanorods grown on Ni foam as high-efficient electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2019, 44, 17900–17908.

[42]

Ding, Y. Y.; Du, X. Q.; Zhang, X. S. Cu-doped Ni3S2 interlaced nanosheet arrays as high-efficiency electrocatalyst boosting the alkaline hydrogen evolution. ChemCatChem 2021, 13, 1824–1833.

[43]

Tao, K. Y.; Gong, Y.; Zhou, Q. F.; Lin, J. H. Nickel sulfide wrapped by porous cobalt molybdate nanosheet arrays grown on Ni foam for oxygen evolution reaction and supercapacitor. Electrochim. Acta 2018, 286, 65–76.

[44]

Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. A.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

[45]

Ren, L. M.; Wang, C.; Li, W.; Dong, R. H.; Sun, H. X.; Liu, N.; Geng, B. Y. Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim. Acta 2019, 318, 42–50.

[46]

Khodabakhshi, M.; Chen, S. M.; Ye, T.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Hierarchical highly wrinkled trimetallic NiFeCu phosphide nanosheets on nanodendrite Ni3S2/Ni foam as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 36268–36276.

[47]

Wang, S.; Lu, Z.; Fang, Y.; Zheng, T.; Zhang, Z. D.; Wang, W. J.; Zhao, R.; Xue, W. D. Controllable synthesis of self-templated hierarchical Ni3S2@N-doped carbon for enhanced oxygen evolution reaction. Mater. Adv. 2021, 2, 3971–3980.

[48]

Li, X. L.; Song, S. J.; Gao, Y. Q.; Ge, L.; Song, W. Y.; Ma, T. Y.; Liu, J. Identification of the charge transfer channel in cobalt encapsulated hollow nitrogen-doped carbon matrix@CdS heterostructure for photocatalytic hydrogen evolution. Small 2021, 17, 2101315.

[49]

Wu, Q. X.; Dong, A. Q.; Yang, C. C.; Ye, L.; Zhao, L. J.; Jiang, Q. Metal–organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting. Chem. Eng. J. 2021, 413, 127482.

[50]

Lei, Z. W.; Bai, J. J.; Li, Y. B.; Wang, Z. L.; Zhao, C. Fabrication of nanoporous nickel-iron hydroxylphosphate composite as bifunctional and reversible catalyst for highly efficient intermittent water splitting. ACS Appl. Mater. Interfaces 2017, 9, 35837–35846.

[51]

Huang, L. C.; Xu, L. S.; Yang, Y.; Yu, H.; Tao, H. Y.; Li, D.; Dong, X. T. Superhydrophilic MoS2-Ni3S2 nanoflake heterostructures grown on 3D Ni foam as an efficient electrocatalyst for overall water splitting. J. Mater. Sci. Mater. Electron. 2020, 31, 6607–6617.

[52]

Zhang, J. F.; Li, Y.; Zhu, T. Y.; Wang, Y.; Cui, J. W.; Wu, J. J.; Xu, H.; Shu, X.; Qin, Y. Q.; Zheng, H. M. et al. 3D coral-like Ni3S2 on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 31330–31339.

[53]

Gong, Y. Q.; Pan, H. L.; Xu, Z. F.; Yang, Z.; Lin, Y.; Wang, J. L. Crossed FeCo2S4 nanosheet arrays grown on 3D nickel foam as high-efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 17259–17264.

[54]

Hu, P.; Jia, Z. Y.; Che, H. B.; Zhou, W. Y.; Liu, N.; Li, F.; Wang, J. S. Engineering hybrid CoMoS4/Ni3S2 nanostructures as efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 2019, 416, 95–103.

[55]

Shi, Y. L.; Feng, X. J.; Guan, H. Y.; Zhang, J. H.; Hu, Z. Porous sunflower plate-like NiFe2O4/CoNi-S heterostructure as efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2021, 46, 8557–8566.

[56]

Zeng, L. Y.; Liu, Y. Q.; Liu, C. G. Facile synthesis of Fe-doped Ni3S2 nanoparticles supported on Ni foam as highly active electrocatalyst for water splitting. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 012002.

[57]

Peng, L. S.; Shen, J. J.; Zheng, X. Q.; Xiang, R.; Deng, M. M.; Mao, Z. X.; Feng, Z. P.; Zhang, L.; Li, L.; Wei, Z. D. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting. J. Catal. 2019, 369, 345–351.

[58]

Wei, J. X.; Xiao, K.; Chen, Y. X.; Guo, X. P.; Huang, B. L.; Liu, Z. Q. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 15, 4592–4600.

[59]

Xiao, K.; Lin, R. T.; Wei, J. X.; Li, N.; Li, H.; Ma, T. Y.; Liu, Z. Q. Electrochemical disproportionation strategy to in situ fill cation vacancies with Ru single atoms. Nano Res. 2022, 15, 4980–4985.

[60]

Li, X. P.; Zheng, L. R.; Liu, S. J.; Ouyang, T.; Ye, S. Y.; Liu, Z. Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett. 2022, 33, 4761–4765.

[61]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[62]
Liu, L. Z.; Li, M. T.; Chen, F.; Huang, H. W. Recent advances on single-atom catalysts for CO2 reduction. Small Struct., in press, https://doi.org/10.1002/sstr.202200188.
DOI
[63]

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

[64]

Hu, C.; Hu, J. C.; Zhu, Z. J.; Lu, Y.; Chu, S. Q.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting. Angew. Chem., Int. Ed. 2022, 61, e202212397.

File
12274_2023_5453_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 November 2022
Revised: 14 December 2022
Accepted: 23 December 2022
Published: 19 February 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2021YFA1501300 and 2019YFC1907602) and the National Natural Science Foundation of China (Nos. 51572295, 21273285, and 21003157).

Return