Journal Home > Volume 16 , Issue 5

Two-dimensional (2D) material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes. However, in-depth understanding of water transportation behavior in such confined nanochannels is still lacking, which hinders the development of 2D nanosheets membranes. Herein, we investigated water confined in graphene or MoS2 nanochannels by molecular dynamics (MD) simulations and found water’s diffusivity always varied linearly with their mean square displacement along z direction ( Δz2 ) when system variables (e.g., water molecules’ number, channel height, nonbonded interaction parameter, and harmonic potential constraining water’s z-coordinate) changed. Such linear correlation applies to different water models and different force fields (FFs) of channel walls (e.g., different Lennard–Jones parameters or even flexible FF), no matter whether water molecules form 3-, 2-, or quasi-2-layer structure in the nanochannel. This indicates, though water molecules’ motion along z direction (z-fluctuation, confined within 1 nm) and that in xy plane (xy-diffusion) are entirely different, they are tightly coupled: Violent z-fluctuation would produce more transient void to facilitate xy-diffusion, which is to the sharp contrary of bulk water, where motions in x, y, and z directions are symmetric, but independent. Our work could help design high performance 2D nanochannels and discover more novel principles in nano-fluidics and membrane separation fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water’s motions in x–y and z directions of 2D nanochannels: Entirely different but tightly coupled

Show Author's information Shouwei Liao1Qia Ke1Yanying Wei1,2( )Libo Li1,2( )
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Two-dimensional (2D) material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes. However, in-depth understanding of water transportation behavior in such confined nanochannels is still lacking, which hinders the development of 2D nanosheets membranes. Herein, we investigated water confined in graphene or MoS2 nanochannels by molecular dynamics (MD) simulations and found water’s diffusivity always varied linearly with their mean square displacement along z direction ( Δz2 ) when system variables (e.g., water molecules’ number, channel height, nonbonded interaction parameter, and harmonic potential constraining water’s z-coordinate) changed. Such linear correlation applies to different water models and different force fields (FFs) of channel walls (e.g., different Lennard–Jones parameters or even flexible FF), no matter whether water molecules form 3-, 2-, or quasi-2-layer structure in the nanochannel. This indicates, though water molecules’ motion along z direction (z-fluctuation, confined within 1 nm) and that in xy plane (xy-diffusion) are entirely different, they are tightly coupled: Violent z-fluctuation would produce more transient void to facilitate xy-diffusion, which is to the sharp contrary of bulk water, where motions in x, y, and z directions are symmetric, but independent. Our work could help design high performance 2D nanochannels and discover more novel principles in nano-fluidics and membrane separation fields.

Keywords: graphene, membranes, nanochannel, nanofluidics, water diffusion

References(74)

[1]

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

[2]

Muñoz-Santiburcio, D.; Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 2021, 121, 6293–6320.

[3]

Gao, J.; Feng, Y. P.; Guo, W.; Jiang, L. Nanofluidics in two-dimensional layered materials: Inspirations from nature. Chem. Soc. Rev. 2017, 46, 5400–5424.

[4]

Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

[5]

Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.

[6]

Wang, S. F.; Yang, L. X.; He, G. W.; Shi, B. B.; Li, Y. F.; Wu, H.; Zhang, R. N.; Nunes, S.; Jiang, Z. Y. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 2020, 49, 1071–1089.

[7]

Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

[8]

Mouterde, T.; Keerthi, A.; Poggioli, A. R.; Dar, S. A.; Siria, A.; Geim, A. K.; Bocquet, L.; Radha, B. Molecular streaming and its voltage control in ångström-scale channels. Nature 2019, 567, 87–90.

[9]

Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

[10]

Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew Chem., Int. Ed. 2020, 59, 8720–8726.

[11]

Gopinadhan, K.; Hu, S.; Esfandiar, A.; Lozada-Hidalgo, M.; Wang, F. C.; Yang, Q.; Tyurnina, A. V.; Keerthi, A.; Radha, B.; Geim, A. K. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 2019, 363, 145–148.

[12]

Chen, L.; Shi, G. S.; Shen, J.; Peng, B. Q.; Zhang, B. W.; Wang, Y. Z.; Bian, F. G.; Wang, J. J.; Li, D. Y.; Qian, Z. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383.

[13]

Zhang, W. L.; Deng, X.; Ding, L. M. Artificial water-channel membranes for desalination. Sci. Bull. 2021, 66, 1611–1613.

[14]

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water–water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

[15]

Han, Z. Y.; Xiao, X.; Qu, H. J.; Hu, M. L.; Au, C.; Nashalian, A.; Xiao, X.; Wang, Y. X.; Yang, L.; Jia, F. C. et al. Ultrafast and selective nanofiltration enabled by graphene oxide membranes with unzipped carbon nanotube networks. ACS Appl. Mater. Interfaces 2022, 14, 1850–1860.

[16]

Kavokine, N.; Bocquet, M. L.; Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022, 602, 84–90.

[17]

Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P. K. Confined water: Structure, dynamics, and thermodynamics. Acc. Chem. Res. 2017, 50, 2139–2146.

[18]

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256.

[19]

Yang, Q.; Sun, P. Z.; Fumagalli, L.; Stebunov, Y. V.; Haigh, S. J.; Zhou, Z. W.; Grigorieva, I. V.; Wang, F. C.; Geim, A. K. Capillary condensation under atomic-scale confinement. Nature 2020, 588, 250–253.

[20]

Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K. et al. Anomalously low dielectric constant of confined water. Science 2018, 360, 1339–1342.

[21]

Zhou, K. G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J. et al. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236–240.

[22]

Jiang, J.; Gao, Y. R.; Zhu, W. D.; Liu, Y.; Zhu, C. Q.; Francisco, J. S.; Zeng, X. C. First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 2021, 143, 8177–8183.

[23]

Fu, H. Q.; Wang, Z.; Li, P.; Qian, W.; Zhang, Z. X.; Zhao, X.; Feng, H.; Yang, Z. G.; Kou, Z. K.; He, D. P. Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment. Nano Res. 2023, 16, 1826–1834.

[24]

Wang, L. L.; Yuan, Z. J.; Zhang, Y. H.; Guo, W.; Sun, X. M.; Duan, X. Sandwich layered double hydroxides with graphene oxide for enhanced water desalination. Sci. China Mater. 2022, 65, 803–810.

[25]
Ma, J. J.; Guan, K. W.; Jiang, Y.; Cao, Y.; Hu, S. Two-dimensional capillaries assembled by van der Waals heterostructures. Nano Res., in press, https://doi.org/10.1007/s12274-022-4888-1.
[26]

Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.

[27]

Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 2016, 538, 222–225.

[28]

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based Membranes. Science 2012, 335, 442–444.

[29]

Xie, Q.; Alibakhshi, M. A.; Jiao, S. P.; Xu, Z. P.; Hempel, M.; Kong, J.; Park, H. G.; Duan, C. H. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 2018, 13, 238–245.

[30]

Wang, Z. Y.; Tu, Q. S.; Zheng, S. X.; Urban, J. J.; Li, S. F.; Mi, B. X. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 2017, 17, 7289–7298.

[31]

Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.

[32]

Lu, Z.; Wei, Y. Y.; Deng, J. J.; Ding, L.; Li, Z. K.; Wang, H. H. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 2019, 13, 10535–10544.

[33]

Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew Chem., Int. Ed. 2017, 56, 8974–8980.

[34]

Chin, H. T.; Klimes, J.; Hu, I. F.; Chen, D. R.; Nguyen, H. T.; Chen, T. W.; Ma, S. W.; Hofmann, M.; Liang, C. T.; Hsieh, Y. P. Ferroelectric 2D ice under graphene confinement. Nat. Commun. 2021, 12, 6291.

[35]

Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445.

[36]

Neek-Amal, M.; Peeters, F. M.; Grigorieva, I. V.; Geim, A. K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 2016, 10, 3685–3692.

[37]

Zhao, Z. X.; Sun, C. Z.; Zhou, R. F. Thermal conductivity of confined-water in graphene nanochannels. Int. J. Heat Mass Transf. 2020, 152, 119502.

[38]

Cheng, C.; Jiang, G. P.; Simon, G. P.; Liu, J. Z.; Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 2018, 13, 685–690.

[39]

Yu, Y. Z.; Fan, J. C.; Esfandiar, A.; Zhu, Y. B.; Wu, H. A.; Wang, F. C. Charge asymmetry effect in ion transport through angstrom-scale channels. J. Phys. Chem. C 2019, 123, 1462–1469.

[40]

Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511–513.

[41]

Guo, W.; Chi, K.; Yan, J. H.; Bao, L. H.; Wang, S.; Liu, Y. Q. Integrated ionic sieving channels from engineering ordered monolayer two-dimensional crystallite structures. Sci. Bull. 2020, 65, 1356–1362.

[42]

Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

[43]

Zhao, Y. F.; Xin, W. W.; Qian, Y. C.; Zhang, Z. H.; Wu, Y. D.; Lin, X. B.; Kong, X. Y.; Jiang, L.; Wen, L. P. Cement-and-pebble nanofluidic membranes with stable acid resistance as osmotic energy generators. Sci. China Mater. 2022, 65, 2729–2736.

[44]

Qiu, H.; Xue, M. M.; Shen, C.; Guo, W. L. Anomalous cation diffusion in salt-doped confined bilayer ice. Nanoscale 2018, 10, 8962–8968.

[45]

Jiao, S. P.; Xu, Z. P. Non-continuum intercalated water diffusion explains fast permeation through graphene oxide membranes. ACS Nano 2017, 11, 11152–11161.

[46]

Keerthi, A.; Goutham, S.; You, Y.; Iamprasertkun, P.; Dryfe, R. A. W.; Geim, A. K.; Radha, B. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 2021, 12, 3092.

[47]

Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 2003, 107, 1345–1352.

[48]

Izadi, S.; Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 2016, 145, 074501.

[49]

Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.

[50]

Calero, C.; Franzese, G. Water under extreme confinement in graphene: Oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. J. Mol. Liq. 2020, 317, 114027.

[51]

Liao, S. W.; Ke, Q.; Wei, Y. Y.; Li, L. B. Water–graphene non-bonded interaction parameters: Development and influence on molecular dynamics simulations. Appl. Surf. Sci. 2022, 603, 154477.

[52]

Kadaoluwa Pathirannahalage, S. P.; Meftahi, N.; Elbourne, A.; Weiss, A. C. G.; McConville, C. F.; Padua, A.; Winkler, D. A.; Costa Gomes, M.; Greaves, T. L.; Le, T. C. et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model. 2021, 61, 4521–4536.

[53]

Belyaeva, L. A.; Schneider, G. F. Wettability of graphene. Surf. Sci. Rep. 2020, 75, 100482.

[54]

Shin, Y. J.; Wang, Y. Y.; Huang, H.; Kalon, G.; Wee, A. T. S.; Shen, Z. X.; Bhatia, C. S.; Yang, H. Surface-energy engineering of graphene. Langmuir 2010, 26, 3798–3802.

[55]

Miyamoto, S.; Kollman, P. A. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962.

[56]

MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.

[57]

Patra, N.; Wang, B. Y.; Král, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009, 9, 3766–3771.

[58]

Zhao, D. H.; Chen, H.; Wang, Y. Q.; Li, B.; Duan, C. X.; Li, Z. X.; Li, L. B. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Front. Chem. Sci. Eng. 2021, 15, 922–934.

[59]

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

[60]

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

[61]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[62]

Ke, Q.; Gong, X. T.; Liao, S. W.; Duan, C. X.; Li, L. B. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022, 365, 120116.

[63]

Parrinello, M.; Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980, 45, 1196–1199.

[64]

Nosé, S.; Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983, 50, 1055–1076.

[65]

Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.

[66]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

[67]

Moulod, M.; Hwang, G. Water self-diffusivity confined in graphene nanogap using molecular dynamics simulations. J. Appl. Phys. 2016, 120, 194302.

[68]

Mondal, S.; Bagchi, B. Water layer at hydrophobic surface: Electrically dead but dynamically alive? Nano Lett. 2020, 20, 8959–8964.

[69]

Jin, H. R.; Li, J.; Xu, Z. H.; Hu, Z. M.; Liu, K. S.; Liu, K.; Duan, J. J.; Hu, B.; Huang, L.; Zhou, J. Assembly of two-dimensional nanofluidic channel with high proton conductivity using single-layer MnO2 nanosheets. Sci. China Mater. 2022, 65, 2578–2584.

[70]

Tanimoto, I. M. F.; Cressiot, B.; Greive, S. J.; Le Pioufle, B.; Bacri, L.; Pelta, J. Focus on using nanopore technology for societal health, environmental, and energy challenges. Nano Res. 2022, 15, 9906–9920.

[71]

Qu, H. J.; Xiao, X.; Han, Z. Y.; Hu, M. L.; Shen, S.; Yang, L.; Jia, F. C.; Wang, T. M.; Ye, Z.; Sun, W. Z. et al. Graphene oxide nanofiltration membrane based on three-dimensional size-controllable metal-organic frameworks for water treatment. ACS Appl. Nano Mater. 2022, 5, 5196–5207.

[72]

Zhang, Z. J.; Xiao, X.; Zhou, Y. H.; Huang, L. J.; Wang, Y. X.; Rong, Q. L.; Han, Z. Y.; Qu, H. J.; Zhu, Z. J.; Xu, S. M. et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano 2021, 15, 13178–13187.

[73]

Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J. S.; Siavashi, M.; Taylor, R. A.; Niazmand, H. et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48.

[74]

Zhang, Y. Z.; Pan, S. F.; Zhang, Y. Y.; Su, S. Q.; Zhang, X.; Liu, J.; Gao, J. Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane. Nano Res. 2023, 16, 18–24.

File
12274_2022_5451_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 November 2022
Revised: 20 December 2022
Accepted: 27 December 2022
Published: 27 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (Nos. 22078104, 22022805, and 22078107), the National Key Research and Development Program (No. 2021YFB3802500), and the financial support from the Science and Technology Key Project of Guangdong Province (No. 2020B010188002). This work was supported by State Key Laboratory of Pulp and Paper Engineering (No. 2022PY04) and Fundamental Research Funds for the Central Universities (No. 2022ZYGXZR010).

Return