Journal Home > Volume 16 , Issue 5

Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural (HMF) to the higher value-added 2,5-furandicarboxylic acid (FDCA). However, these catalysts still suffer from unsatisfactory activity and poor selectivity. A series of N-doped carbon-supported Co-based dual-metal nanoparticles (NPs) have been designed, among which the Co-Cu1.4-CNx exhibits enhanced HMF oxidative activity, achieving FDCA formation rates 4 times higher than that of pristine Co-CNx, with 100% FDCA selectivity. Density functional theory (DFT) calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the d-band center of Co-Cu1.4-CNx, thus reducing the energy barriers for the conversion of HMF to FDCA. Such findings will support the development of superior non-precious metal catalysts for HMF oxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective and effective oxidation of 5-hydroxymethylfurfural by tuning the intermediates adsorption on Co-Cu-CNx

Show Author's information Tianyun Jing1,§Shaokang Yang1,§Yonghai Feng1,( )Tingting Li2Yunpeng Zuo3( )Dewei Rao1( )
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461002, China
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
Present address: Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, Turku 20520, Finland

§ Tianyun Jing and Shaokang Yang contributed equally to this work.

Abstract

Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural (HMF) to the higher value-added 2,5-furandicarboxylic acid (FDCA). However, these catalysts still suffer from unsatisfactory activity and poor selectivity. A series of N-doped carbon-supported Co-based dual-metal nanoparticles (NPs) have been designed, among which the Co-Cu1.4-CNx exhibits enhanced HMF oxidative activity, achieving FDCA formation rates 4 times higher than that of pristine Co-CNx, with 100% FDCA selectivity. Density functional theory (DFT) calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the d-band center of Co-Cu1.4-CNx, thus reducing the energy barriers for the conversion of HMF to FDCA. Such findings will support the development of superior non-precious metal catalysts for HMF oxidation.

Keywords: d-band center, Co-based materials, electronegativity offset, 5-hydroxymethylfurfural (HMF) oxidative activity, 2,5-furandicarboxylic acid (FDCA) selectivity

References(50)

[1]

Rajagopal, D.; Liu, B. The United States can generate up to 3.2 EJ of energy annually from waste. Nat. Energy 2020, 5, 18–19.

[2]

Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699.

[3]

Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613.

[4]

Van Putten, R. J.; Van Der Waal, J. C.; De Jong, E.; Rasrendra, C. B.; Heeres, H. J.; De Vries, J. G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499–1597.

[5]

Lu, X. Y.; Wu, K. H.; Zhang, B. S.; Chen, J. N.; Li, F.; Su, B. J.; Yan, P. Q.; Chen, J. M.; Qi, W. Highly efficient electro-reforming of 5-hydroxymethylfurfural on vertically oriented nickel nanosheet/carbon hybrid catalysts: Structure–function relationships. Angew. Chem., Int. Ed. 2021, 60, 14528–14535.

[6]

Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.

[7]

Payne, K. A. P.; Marshall, S. A.; Fisher, K.; Cliff, M. J.; Cannas, D. M.; Yan, C. Y.; Heyes, D. J.; Parker, D. A.; Larrosa, I.; Leys, D. Enzymatic carboxylation of 2-furoic acid yields 2, 5-furandicarboxylic acid (FDCA). ACS Catal. 2019, 9, 2854–2865.

[8]

Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: Boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural. ACS Catal. 2021, 11, 7828–7844.

[9]

Liao, Y. T.; Van Chi, N.; Ishiguro, N.; Young, A. P.; Tsung, C. K.; Wu, K. C. W. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Appl. Catal. B:Environ. 2020, 270, 118805.

[10]

Xu, S.; Zhou, P.; Zhang, Z. H.; Yang, C. J.; Zhang, B. G.; Deng, K. J.; Bottle, S.; Zhu, H. Y. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc. 2017, 139, 14775–14782.

[11]

Liu, X.; Luo, Y.; Ma, H.; Zhang, S. J.; Che, P. H.; Zhang, M. Y.; Gao, J.; Xu, J. Hydrogen-binding-initiated activation of O–H bonds on a nitrogen-doped surface for the catalytic oxidation of biomass hydroxyl compounds. Angew. Chem., Int. Ed. 2021, 60, 18103–18110.

[12]

Yang, S. W.; Wu, C.; Wang, J. H.; Shen, H. D.; Zhu, K.; Zhang, X.; Cao, Y. L.; Zhang, Q. Y.; Zhang, H. P. Metal single-atom and nanoparticle double-active-site relay catalysts: Design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS Catal. 2022, 12, 971–981.

[13]

Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. J. Am. Chem. Soc. 2019, 141, 890–900.

[14]

Liao, X. M.; Hou, J. D.; Wang, Y.; Zhang, H.; Sun, Y.; Li, X. P.; Tang, S. Y.; Kato, K.; Yamauchi, M.; Jiang, Z. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural. Green Chem. 2019, 21, 4194–4203.

[15]

Han, X. W.; Geng, L.; Guo, Y.; Jia, R.; Liu, X. H.; Zhang, Y. G.; Wang, Y. Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Pt/C-O-Mg catalyst. Green Chem. 2016, 18, 1597–1604.

[16]

Mishra, D. K.; Lee, H. J.; Kim, J.; Lee, H. S.; Cho, J. K.; Suh, Y. W.; Yi, Y. J.; Kim, Y. J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem. 2017, 19, 1619–1623.

[17]

Kim, M.; Su, Y. Q.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Aerobic oxidation of 5-(hydroxymethyl)furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst. Angew. Chem., Int. Ed. 2018, 57, 8235–8239.

[18]

Gao, T. Y.; Chen, J.; Fang, W. H.; Cao, Q.; Su, W. P.; Dumeignil, F. Ru/MnxCe1Oy catalysts with enhanced oxygen mobility and strong metal–support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. J. Catal. 2018, 368, 53–68.

[19]

Zhou, H.; Xu, H. H.; Liu, Y. Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Co/Mn–lignin coordination complexes-derived catalysts. Appl. Catal. B:Environ. 2019, 244, 965–973.

[20]

Zhou, H.; Xu, H. H.; Wang, X. K.; Liu, Y. Convergent production of 2, 5-furandicarboxylic acid from biomass and CO2. Green Chem. 2019, 21, 2923–2927.

[21]

Rao, K. T. V.; Rogers, J. L.; Souzanchi, S.; Dessbesell, L.; Ray, M. B.; Xu, C. Inexpensive but highly efficient Co-Mn mixed-oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ChemSusChem 2018, 11, 3323–3334.

[22]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.

[23]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[24]

Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.

[25]

Ji, Y. L.; Chen, Z.; Wei, R. L.; Yang, C.; Wang, Y. H.; Xu, J.; Zhang, H.; Guan, A. X.; Chen, J. T.; Sham, T. K. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu-Pd sites. Nat. Catal. 2022, 5, 251–258.

[26]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[27]

Joo, S.; Kim, K.; Kwon, O.; Oh, J.; Kim, H. J.; Zhang, L. J.; Zhou, J.; Wang, J. Q.; Jeong, H. Y.; Han, J. W. et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane. Angew. Chem., Int. Ed. 2021, 60, 15912–15919.

[28]

Lin, S. X.; Wang, Q.; Li, M. S.; Hao, Z. W.; Pan, Y. T.; Han, X. Y.; Chang, X.; Huang, S. Y.; Li, Z. H.; Ma, X. B. Ni-Zn dual sites switch the CO2 hydrogenation selectivity via tuning of the d-band center. ACS Catal. 2022, 12, 3346–3356.

[29]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature Zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[30]

Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

[31]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[32]

Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B:Environ. 2021, 298, 120512.

[33]

Nam, G.; Park, J.; Choi, M.; Oh, P.; Park, S.; Kim, M. G.; Park, N.; Cho, J.; Lee, J. S. Carbon-coated core–shell Fe-Cu nanoparticles as highly active and durable electrocatalysts for a Zn-air battery. ACS Nano 2015, 9, 6493–6501.

[34]

Donoeva, B.; Masoud, N.; De Jongh, P. E. Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal. 2017, 7, 4581–4591.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[37]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[38]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[39]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, K. T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[40]
Min, X. W.; Lv, H.; Yamauchi, Y.; Liu, B. Porous metal nanocrystal catalysts: Can crystalline porosity enable catalytic selectivity? CCS Chem. 2022, 4, 1829–1842.
[41]

Zhu, G. H.; Yang, H. Y.; Jiang, Y.; Sun, Z. Q.; Li, X. P.; Yang, J. P.; Wang, H. F.; Zou, R. J.; Jiang, W.; Qiu, P. P. et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394.

[42]

Liu, H.; Ding, N.; Wei, J. N.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Oxidative esterification of 5-hydroxymethylfurfural with an N-doped carbon-supported CoCu bimetallic catalyst. ChemSusChem 2020, 13, 4151–4158.

[43]

Zuo, Y. P.; Rao, D. W.; Zhang, N.; Li, T. T.; Jing, T. Y.; Kment, Š.; Sofer, Z.; Chai, Y. Self-reconstruction mediates isolated Pt tailored nanoframes for highly efficient catalysis. J. Mater. Chem. A 2021, 9, 22501–22508.

[44]

Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

[45]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[46]

Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.

[47]

Zuo, Y. P.; Li, T. T.; Zhang, N.; Jing, T. Y.; Rao, D. W.; Schmuki, P.; Kment, Š.; Zbořil, R.; Chai, Y. Spatially confined formation of single atoms in highly porous carbon nitride nanoreactors. ACS Nano 2021, 15, 7790–7798.

[48]

Davis, S. E.; Zope, B. N.; Davis, R. J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem. 2012, 14, 143–147.

[49]

Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010, 330, 74–78.

[50]

Ryu, J.; Bregante, D. T.; Howland, W. C.; Bisbey, R. P.; Kaminsky, C. J.; Surendranath, Y. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 2021, 4, 742–752.

File
12274_2022_5450_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2022
Revised: 23 December 2022
Accepted: 24 December 2022
Published: 07 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 51902281, 51801075, and 82160421), the Natural Science Foundation of Jiangsu Province (No. BK20211322), and the Scientific and Technological Projects of Henan Province (No. 212102210293).

Return